A Neoarchean K-rich granitoid belt in the northern North China Craton

被引:36
|
作者
Fu, Jinghao [1 ]
Liu, Shuwen [1 ]
Zhang, Bo [1 ]
Guo, Rongrong [2 ]
Wang, Maojiang [1 ]
机构
[1] Peking Univ, Sch Earth & Space Sci, Key Lab Orogen Belts & Crustal Evolut, Minist Educ, Beijing 100871, Peoples R China
[2] Northeastern Univ, Sch Resources & Civil Engn, Dept Geol, Key Lab,Minist Educ Safe Min Deep Met Mines, Shenyang 110819, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Neoarchean K-rich granitoid belt; Sanukitoids and potassic granites; Multi-stage deformation; Retreated subductions in the continental margin; Northern North China Craton; ZIRCON U-PB; WESTERN LIAONING PROVINCE; TRONDHJEMITE-GRANODIORITE TTG; ARCHEAN CRUSTAL EVOLUTION; EASTERN HEBEI PROVINCE; ISUA GREENSTONE-BELT; LU-HF ISOTOPES; DHARWAR CRATON; TERRANE IMPLICATIONS; MAJOR LITHOLOGIES;
D O I
10.1016/j.precamres.2019.04.021
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Archean metamorphic basement in the southeastern part of Eastern Hebei to Western Liaoning provinces, northern North China Craton, is dominated by Neoarchean K-rich granitoids, with a small amount of Neoarchean supracrustal rocks and Na-rich dioritic-tonalitic-trondhjemitic-granodioritic gneisses, and minor Paleo- to Mesoarchean rocks. The Paleo- to Mesoarchean lithological signatures include TTG gneisses and supracrustal rocks at the Caozhuang and Caochang areas. The Neoarchean K-rich granitoids form a ca. 350 km long belt extending in a NE direction, and primarily consist of porphyritic monzodioritic-quartz monzodioritic-granodioritic-monzogranitic (MQGM) gneisses and secondary monzogranite-syenogranites and charnockites, with minor Neoarchean TTG gneiss enclaves. Based on their major mafic mineral phases, the MQGM gneisses can be divided into an amphibole-dominated group and a biotite-dominated group. Zircon U-Pb isotopic dating reveals that the Caozhuang trondhjemitic gneisses, amphibole-dominated MQGM gneisses, and biotite-dominated MQGM gneisses were emplaced at similar to 2.90 Ga, 2.55-2.53 Ga, and 2.55-2.53 Ga, respectively. The amphibole-dominated porphyritic MQGM gneisses are geochemically analogous to sanukitoids, and the sanukitoid magma was derived from the partial melting of lithospheric mantle metasomatized by dehydration fluids and melts from subducted slabs and related sediments, following the fractionation of amphibole and clinopyroxene during their magmatic evolution. The magmatic precursors of the biotite-dominated MQGM gneisses were most likely generated by the partial melting of medium- to high-K mafic-intermediate rocks and locally generated by the partial melting of metagreywackes at medium pressures. Within the K-rich granitoid belt, the 2.55-2.53 Ga porphyritic MQGM gneisses experienced 2.53-2.51 Ga E-W extension and strike-slip shearing deformation in the Jinzhou-Xingcheng structural domain, and diapiric upwelling by the formation of dome structures in the JielingkouAnziling-Suizhong structural domain. All these structures then suffered a top-to-the-SE-NEE thrusting in the northern margin during 2.51-2.50 Ga. The 2.53-2.51 Ga dioritic-tonalitic-trondhjemitic-granodioritic gneisses and charnockites in the Taipingzhai-Santunying-Zunhua structural domain firstly underwent diapiric upwelling during 2.51-2.50 Ga, then together with the 2.52-2.50 Ga volcanic-sedimentary rocks in the ShuangshanziQian'an-Lulong structural domain overprinted by nearly N-S-striking dextral strike-slip shearing deformation during 2.50-1.80 Ga. The temporal-spatial relationships, petrogenesis, and structural patterns of these various Neoarchean lithological assemblages confirm that the Neoarchean K-rich granitoid belt in the northern North China Craton was most likely developed in an active continental margin setting, and our studies suggest this involved progressively southeastward multi-stage retreating oceanic slab subduction and collisions between an oceanic arc and an ancient continental nucleus.
引用
收藏
页码:193 / 216
页数:24
相关论文
共 50 条
  • [31] Petrogenesis and tectonic implications of two types of Liaoji granitoid in the Jiao-Liao-Ji Belt, North China Craton
    Zhu, Kai
    Liu, Zhenghong
    Xu, Zhongyuan
    Wang, Xing'an
    Cui, Weilong
    Hao, Yujie
    PRECAMBRIAN RESEARCH, 2019, 331
  • [32] Geochronology and geochemistry of Liaohe Group and Liaoji granitoid in the Jiao-Liao-Ji Belt, North China Craton: Implications for petrogenesis and tectonic evolution
    Dong, Yu
    Bi, Jun-hui
    Xing, De-he
    Ge, Wen-chun
    Yang, Hao
    Hao, Yu-jie
    Ji, Zheng
    Jing, Yan
    PRECAMBRIAN RESEARCH, 2019, 332
  • [33] Neoarchean and Paleoproterozoic K-rich granites in the Phan Si Pan Complex, north Vietnam: Constraints on the early crustal evolution of the Yangtze Block
    Zhao, Tianyu
    Cawood, Peter A.
    Wang, Kai
    Zi, Jian-Wei
    Feng, Qinglai
    Quyen Minh Nguyen
    Dung My Tran
    PRECAMBRIAN RESEARCH, 2019, 332
  • [34] Geochronology and petrogenesis of the Neoarchean-Paleoproterozoic Taihua Complex, NE China: Implications for the evolution of the North China Craton
    Dong, Mengmeng
    Wang, Changming
    Santosh, M.
    Shi, Kangxing
    Du, Bin
    Chen, Qi
    Zhu, Jiaxuan
    Liu, Xiaoji
    PRECAMBRIAN RESEARCH, 2020, 346
  • [35] New evidence for Neoarchean (ca. 2.7 Ga) crustal growth in the North China Craton
    Diwu, Chunrong
    Wang, Tingyi
    Yan, Jianghao
    PRECAMBRIAN RESEARCH, 2020, 350
  • [36] Early Neoarchean geodynamic regime in the North China Craton: Constraints from 2.7 Ga granitoids in the southern Jilin terrane
    Liu, Jin
    Zhang, Hongxiang
    Palin, Richard M.
    Liu, Zhenghong
    Zhang, Jian
    Cheng, Changquan
    Liu, Xiaoguang
    Zhao, Chen
    GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2025, 137 (1-2) : 911 - 931
  • [37] Geochemistry of metamorphosed volcanic rocks in the Neoarchean Qingyuan greenstone belt, North China Craton: Implications for geodynamic evolution and VMS mineralization
    Peng, Zidong
    Wang, Changle
    Zhang, Lianchang
    Zhu, Mingtian
    Tong, Xiaoxue
    PRECAMBRIAN RESEARCH, 2019, 326 : 196 - 221
  • [38] Magmatic record of Neoarchean arc-polarity reversal from the Dengfeng segment of the Central Orogenic Belt, North China Craton
    Deng, Hao
    Kusky, Timothy
    Polat, Ali
    Lan, Bingyuan
    Huang, Bo
    Peng, Hongtao
    Wang, Junpeng
    Wang, Songjie
    PRECAMBRIAN RESEARCH, 2019, 326 : 105 - 123
  • [39] Crustal growth and reworking of the eastern North China Craton: Constraints from the age and geochemistry of the Neoarchean Taishan TTG gneisses
    Chen, Ying
    Zhang, Jian
    Liu, Jin
    Han, Yigui
    Yin, Changqing
    Qian, Jiahui
    Liu, Xiaoguang
    PRECAMBRIAN RESEARCH, 2020, 343
  • [40] From subduction initiation to hot subduction: Life of a Neoarchean subduction zone from the Dengfeng Greenstone Belt, North China Craton
    Deng, Hao
    Jia, Ning
    Kusky, Timothy
    Polat, Ali
    Peng, Guanglei
    Huang, Bo
    Wang, Lu
    Wang, Junpeng
    GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2022, 134 (5-6) : 1277 - 1300