Design of the Flowing LIquid Torus (FLIT)

被引:11
作者
Kolemen, E. [1 ,2 ]
Hvasta, M. [1 ]
Majeski, R. [2 ]
Maingi, R. [2 ]
Brooks, A. [2 ]
Kozub, T. [2 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[2] PPPL, Princeton, NJ 08540 USA
基金
美国能源部;
关键词
LITHIUM; JET;
D O I
10.1016/j.nme.2019.01.005
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The design of the Flowing LIquid Torus (FLIT) at Princeton Plasma Physics Laboratory (PPPL) is presented. FLIT will focus on the development of a liquid metal (LM) diagnostics and divertor system (without a plasma source) suitable for implementation in present-day fusion systems, such as NSTX-U. FLIT is intended to provide proof-of-concept for fast-flowing LM divertor designs for heat fluxes > 10 MW/m(2). The toroidal test article (ID approximate to 0.56 m, OD approximate to 1.9 m, h approximate to 0.61 m) consists of 12 rectangular coils that can generate a centerline magnetic field of 1 T magnetic for greater than 10 s. Initially, 30 gallons Galinstan (Ga-In-Sn eutectic) will be recirculated within the test article using six jxB pumps to achieve flow velocities of up to 10 m/s across the fully annular radial test section. FLIT is designed to be a flexible machine that will allow experimental testing of various LM injection techniques, the study of flow instabilities, and electromagnetic control concepts to prove the feasibility of the LM divertors within fusion reactors.
引用
收藏
页码:524 / 530
页数:7
相关论文
共 28 条
[1]   On the exploration of innovative concepts for fusion chamber technology [J].
Abdou, MA ;
Ying, A ;
Morley, N ;
Gulec, K ;
Smolentsev, S ;
Kotschenreuther, M ;
Malang, S ;
Zinkle, S ;
Rognlien, T ;
Fogarty, P ;
Nelson, B ;
Nygren, R ;
McCarthy, K ;
Youssef, MZ ;
Ghoniem, N ;
Sze, D ;
Wong, C ;
Sawan, M ;
Khater, H ;
Woolley, R ;
Mattas, R ;
Moir, R ;
Sharafat, S ;
Brooks, J ;
Hassanein, A ;
Petti, D ;
Tillack, M ;
Ulrickson, M ;
Uchimoto, T .
FUSION ENGINEERING AND DESIGN, 2001, 54 (02) :181-247
[2]  
Carslaw H. S., 1986, CONDUCTION HEAT SOLI
[3]   Lithium divertor concept and results of supporting experiments [J].
Evtikhin, VA ;
Lyublinski, IE ;
Vertkov, AV ;
Mirnov, SV ;
Lazarev, VB ;
Petrova, NP ;
Sotnikov, SM ;
Chernobai, AP ;
Khripunov, BI ;
Petrov, VB ;
Prokhorov, DY ;
Korzhavin, VM .
PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 (06) :955-977
[4]   Experimental demonstration of hydraulic jump control in liquid metal channel flow using Lorentz force [J].
Fisher, A. E. ;
Kolemen, E. ;
Hvasta, M. G. .
PHYSICS OF FLUIDS, 2018, 30 (06)
[5]   Physics of radiation-driven islands near the tokamak density limit [J].
Gates, D. A. ;
Delgado-Aparicio, L. ;
White, R. B. .
NUCLEAR FUSION, 2013, 53 (06)
[6]   ISTTOK tokamak plasmas influence on a liquid gallium jet dynamic behavior [J].
Gomes, R. B. ;
Silva, C. ;
Fernandes, H. ;
Duarte, P. ;
Nedzelskiy, I. ;
Lielausis, O. ;
Klyukin, A. ;
Platacis, E. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) :S989-S992
[7]   Hydrogen and helium entrapment in flowing liquid metal plasma-facing surfaces [J].
Hassanein, A .
JOURNAL OF NUCLEAR MATERIALS, 2002, 307 (2 SUPPL.) :1517-1519
[8]   Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors [J].
Hvasta, M. G. ;
Kolemen, E. ;
Fisher, A. E. ;
Ji, H. .
NUCLEAR FUSION, 2018, 58 (01)
[9]  
Idelchick I. E., 1986, HDB HYDRAULIC RESIST, P223
[10]  
Jaworski M.A., 2013, NUCL FUSION, V53