Silicone-Containing Biodegradable Smart Elastomeric Thermoplastic Hyperbranched Polyurethane

被引:31
作者
Ghosh, Tuhin [1 ]
Karak, Niranjan [1 ]
机构
[1] Tezpur Univ, Dept Chem Sci, Ctr Polymer Sci & Technol, Adv Polymer & Nanomat Lab, Tezpur 784028, India
关键词
RESISTANT; SURFACE;
D O I
10.1021/acsomega.8b00734
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silicone-containing biobased hyperbranched polyurethane thermoplastic elastomers at different compositions were reported for the first time. The structures of the polymers were evaluated from Fourier transform infrared spectroscopy, NMR, X-ray diffraction, and energy-dispersive Xray spectroscopy analyses. The synthesized elastomers possess high molecular weight (1.11-1.38 x 10(5) g.mol(-1)) and low glass transition temperature (from -40.0 to -27.3 degrees C). These polymers exhibited multistimuli responsive excellent repeatable intrinsic self-healing (100% efficiency), shape recovery (100%), and efficient self-cleaning (contact angle 102 degrees-107 degrees) abilities along with exceptional elongation at break (2834-3145%), high toughness (123.3-167.8 MJ.m(-3)), good impact resistance (18.3-20.3 kJ.m(-1)), and adequate tensile strength (5.9-6.9 MPa). Furthermore, high thermal stability (253-263 degrees C) as well as excellent UV and chemical resistance was also found for the polymers. Most interestingly, controlled bacterial biodegradation under exposure of Pseudomonas aeruginosa bacterial strains demonstrated them as sustainable materials. Therefore, such biobased novel thermoplastic polyurethane elastomers with self-healing, self-cleaning, and shape memory effects possess great potential for their advanced multifaceted applications.
引用
收藏
页码:6849 / 6859
页数:11
相关论文
共 33 条
[31]   Synthesis and characterization of glycerol-adipic acid hyperbranched polyesters [J].
Zhang, Tracy ;
Howell, Bob A. ;
Dumitrascu, Adina ;
Martin, Steven J. ;
Smith, Patrick B. .
POLYMER, 2014, 55 (20) :5065-5072
[32]   Self-healing poly(siloxane-urethane) elastomers with remoldability, shape memory and biocompatibility [J].
Zhao, Jian ;
Xu, Rui ;
Luo, Gaoxing ;
Wu, Jun ;
Xia, Hesheng .
POLYMER CHEMISTRY, 2016, 7 (47) :7278-7286
[33]   Multi-stimuli-responsive self-healing metallo-supramolecular polymer nanocomposites [J].
Zheng, Qifeng ;
Ma, Zhenqiang ;
Gong, Shaoqin .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (09) :3324-3334