ON SERIES Σ ckf(kx) AND KHINCHIN'S CONJECTURE

被引:9
作者
Berkes, Istvan [1 ]
Weber, Michel [2 ]
机构
[1] Graz Univ Technol, Inst Stat, A-8010 Graz, Austria
[2] IRMA, F-67084 Strasbourg, France
基金
奥地利科学基金会;
关键词
CONVERGENCE;
D O I
10.1007/s11856-014-0036-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the optimality of a criterion of Koksma (1953) in Khinchin's conjecture on strong uniform distribution. This verifies a claim of Bourgain (1988) and leads also to a near optimal a.e. convergence condition for series Sigma(infinity)(k=1) c(k)f(kx) with f is an element of L-2. Finally, we show that under mild regularity conditions on the Fourier coefficients of f, the Khinchin conjecture is valid assuming only f is an element of L-2.
引用
收藏
页码:593 / 609
页数:17
相关论文
共 24 条
[1]  
Aistleitner C, 2012, P AM MATH SOC, V140, P3893
[2]  
Alexits G., 1961, CONVERGENCE PROBLEMS
[3]  
[Anonymous], Q J MATH IN PRESS
[4]  
[Anonymous], 1951, J INDIAN MATH SOC
[5]  
[Anonymous], 1953, B SOC MATH BELG
[6]  
[Anonymous], 1968, MAT ZAMETKI
[7]  
[Anonymous], 1966, MAT SB
[8]  
[Anonymous], ARXIV12100741V3MATHN
[10]  
Berkes I, 2009, MEM AM MATH SOC, V201, P1