Set-Membership Parameter Estimation: Improved Understanding of Microgel Polymerization

被引:1
作者
Jung, Falco [1 ]
Caspari, Adrian [1 ]
Mhamdi, Adel [1 ]
Mitsos, Alexander [1 ]
机构
[1] Rhein Westfal TH Aachen, Proc Syst Engn, Aachen, Germany
来源
IFAC PAPERSONLINE | 2019年 / 52卷 / 01期
关键词
set-based estimation; set-membership; dynamic optimization; microgels; MODEL-BASED DESIGN; SYSTEMS; DELIVERY;
D O I
10.1016/j.ifacol.2019.06.125
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Functional microgels based on N-Isopropylacrylamide (NIPAM) are in the focus of research because their properties are promising for diverse applications, such as drug delivery and tunable membranes. However, the synthesis of microgels with optimal properties for the respective applications is challenging and time-intensive due to the sensitivity of the product properties to the synthesis conditions. Optimal synthesis strategies can be determined and controlled with model-based approaches. This in turn requires process models with parameters estimated based on experimental measurements. However, available measurement are not always sufficient to determine all model parameters. Herein, we use inline Raman and calorimetric data. We use a set-membership approach for parameter estimation and identifiability analysis. We solve a series of constrained dynamic optimization problems to approximate the feasible parameter set by a box. The results show that, while kinetic parameters corresponding to the main monomer are identifiable, a subset of parameters corresponding to the cross-linker have wide confidence ranges. This is caused by the low initial concentration of cross-linker in comparison to the concentration of monomer. The determined parameters enable the improved model-based prediction of the properties of microgels based on NIPAM and pave the way towards model-based control applications. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:580 / 585
页数:6
相关论文
共 26 条
[1]  
Belforte G., 1988, IFAC P VOLUMES, V21, P399
[2]   MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics [J].
Egea, Jose A. ;
Henriques, David ;
Cokelaer, Thomas ;
Villaverde, Alejandro F. ;
MacNamara, Aidan ;
Danciu, Diana-Patricia ;
Banga, Julio R. ;
Saez-Rodriguez, Julio .
BMC BIOINFORMATICS, 2014, 15
[3]   Model-based design of experiments for parameter precision: State of the art [J].
Franceschini, Gaia ;
Macchietto, Sandro .
CHEMICAL ENGINEERING SCIENCE, 2008, 63 (19) :4846-4872
[4]   Parameter identifiability analysis and visualization in large-scale kinetic models of biosystems [J].
Gabor, Attila ;
Villaverde, Alejandro F. ;
Banga, Julio R. .
BMC SYSTEMS BIOLOGY, 2017, 11
[5]  
Goerke T, 2016, IEEE C EVOL COMPUTAT, P5100, DOI 10.1109/CEC.2016.7748336
[6]   Microfluidic fabrication of polyethylene glycol microgel capsules with tailored properties for the delivery of biomolecules [J].
Guerzoni, Luis P. B. ;
Bohl, Jan ;
Jans, Alexander ;
Rose, Jonas C. ;
Koehler, Jens ;
Kuehne, Alexander J. C. ;
De laporte, Laura .
BIOMATERIALS SCIENCE, 2017, 5 (08) :1549-1557
[7]   Multi-component kinetic modeling for controlling local compositions in thermosensitive polymers [J].
Hoare, Todd ;
McLean, Daniel .
MACROMOLECULAR THEORY AND SIMULATIONS, 2006, 15 (08) :619-632
[8]   Kinetic Modeling of Precipitation Terpolymerization for Functional Microgels [J].
Janssen, Franca A. L. ;
Ksiazkiewicz, Agnieszka ;
Kather, Michael ;
Kroeger, Leif C. ;
Mhamdi, Adel ;
Leonhard, Kai ;
Pich, Andrij ;
Mitsos, Alexander .
28TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2018, 43 :109-114
[9]   SET INVERSION VIA INTERVAL-ANALYSIS FOR NONLINEAR BOUNDED-ERROR ESTIMATION [J].
JAULIN, L ;
WALTER, E .
AUTOMATICA, 1993, 29 (04) :1053-1064
[10]  
Jung F., 2018, COMPUTER AIDED CHEM, V44, P925