Detecting cells using non-negative matrix factorization on calcium imaging data

被引:92
作者
Maruyama, Ryuichi [1 ]
Maeda, Kazuma [2 ]
Moroda, Hajime [1 ]
Kato, Ichiro [1 ]
Inoue, Masashi [2 ]
Miyakawa, Hiroyoshi [2 ]
Aonishi, Toru [1 ]
机构
[1] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Midori Ku, Yokohama, Kanagawa 2268502, Japan
[2] Tokyo Univ Pharm & Life Sci, Sch Life Sci, Hachioji, Tokyo 1920392, Japan
关键词
Non-negative matrix factorization; Multi-cellular calcium imaging; Independent component analysis; Semi-automatic cell detection; Dendrite; INDEPENDENT COMPONENT ANALYSIS; CELLULAR RESOLUTION; IDENTIFICATION; INDICATORS; DYNAMICS;
D O I
10.1016/j.neunet.2014.03.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a cell detection algorithm using non-negative matrix factorization (NMF) on Ca2+ imaging data. To apply NMF to Ca2+ imaging data, we use the bleaching line of the background fluorescence intensity as an a priori background constraint to make the NMF uniquely dissociate the background component from the image data. This constraint helps us to incorporate the effect of dye-bleaching and reduce the non-uniqueness of the solution. We demonstrate that in the case of noisy data, the NMF algorithm can detect cells more accurately than Mukamel's independent component analysis algorithm, a state-of-art method. We then apply the NMF algorithm to Ca2+ imaging data recorded on the local activities of subcellular structures of multiple cells in a wide area. We show that our method can decompose rapid transient components corresponding to somas and dendrites of many neurons, and furthermore, that it can decompose slow transient components probably corresponding to glial cells. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:11 / 19
页数:9
相关论文
共 29 条
[2]   Algorithms and applications for approximate nonnegative matrix factorization [J].
Berry, Michael W. ;
Browne, Murray ;
Langville, Amy N. ;
Pauca, V. Paul ;
Plemmons, Robert J. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) :155-173
[3]   Independent component analysis at the neural cocktail party [J].
Brown, GD ;
Yamada, S ;
Sejnowski, TJ .
TRENDS IN NEUROSCIENCES, 2001, 24 (01) :54-63
[4]  
Canny J.F., 2004, 27 ACM INT C RES DEV, P122
[5]  
Cemgil Ali Taylan, 2009, Comput Intell Neurosci, P785152, DOI 10.1155/2009/785152
[6]   Functional imaging of hippocampal place cells at cellular resolution during virtual navigation [J].
Dombeck, Daniel A. ;
Harvey, Christopher D. ;
Tian, Lin ;
Looger, Loren L. ;
Tank, David W. .
NATURE NEUROSCIENCE, 2010, 13 (11) :1433-U180
[7]  
GRYNKIEWICZ G, 1985, J BIOL CHEM, V260, P3440
[8]  
Hoyer PO, 2004, J MACH LEARN RES, V5, P1457
[9]  
Hyvarinen A., 2002, Independent Component Analysis
[10]   Synfire chains and cortical songs: Temporal modules of cortical activity [J].
Ikegaya, Y ;
Aaron, G ;
Cossart, R ;
Aronov, D ;
Lampl, I ;
Ferster, D ;
Yuste, R .
SCIENCE, 2004, 304 (5670) :559-564