Hermite-Hadamard's trapezoid and mid-point type inequalities on a disk

被引:5
作者
Delavar, M. Rostamian [1 ]
Dragomir, S. S. [2 ]
De La Sen, M. [3 ]
机构
[1] Univ Bojnord, Fac Basic Sci, Dept Math, Bojnord, Iran
[2] Victoria Univ, Coll Engn & Sci, Math, Melbourne, Vic, Australia
[3] Univ Basque Country, Inst Res & Dev Proc, Bilbao, Spain
关键词
Hermite-Hadamard inequality; Convex functions of double variable; Trapezoid and mid-point type inequalities; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.1186/s13660-019-2061-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some trapezoid and mid-point type inequalities related to the Hermite-Hadamard inequality on the disk of center C=(a,b) and radius R, D(C,R)R2, are investigated. It is shown that the estimated value obtained in the trapezoid and mid-point type inequalities has a relation with the integral of the partial derivative of the considered function on (C,R), the boundary of D(C,R).
引用
收藏
页数:8
相关论文
共 11 条
[1]   Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means [J].
Alomari, M. ;
Darus, M. ;
Kirmaci, U. S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (01) :225-232
[2]   Some generalizations of Hermite-Hadamard type inequalities [J].
Delavar, M. Rostamian ;
De La Sen, M. .
SPRINGERPLUS, 2016, 5
[3]   ON η-CONVEXITY [J].
Delavar, Mohsen Rostamian ;
Dragomir, Silvestru Sever .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (01) :203-216
[4]  
Dragomir S. S., 2000, J. Inequal. Pure Appl. Math, V1
[5]   Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula [J].
Dragomir, SS ;
Agarwal, RP .
APPLIED MATHEMATICS LETTERS, 1998, 11 (05) :91-95
[6]   Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula [J].
Kirmaci, US .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (01) :137-146
[7]   Inequalities for differentiable mappings with application to special means and quadrature formulae [J].
Pearce, CEM ;
Pecaric, J .
APPLIED MATHEMATICS LETTERS, 2000, 13 (02) :51-55
[8]  
Sarikaya M., 2008, J. Math. Inequal, V2, P335, DOI DOI 10.7153/JMI-02-30
[9]   ON SOME INEQUALITY OF HERMITE-HADAMARD TYPE [J].
Wasowiez, Szymon ;
Witkowski, Alfred .
OPUSCULA MATHEMATICA, 2012, 32 (03) :591-600
[10]  
Yang GS, 2004, COMPUT MATH APPL, V47, P207, DOI [10.1016/S0898-1221(04)90017-X, 10.1016/S0898-1221(04)00005-7]