Image Classification Algorithm Named OCFC Based on Self-supervised Learning

被引:0
|
作者
Shu, Qihui [1 ]
Liu, Song [1 ]
Wang, Jianwen [1 ]
Lai, Qinghan [1 ]
Zhou, Zihan [1 ]
机构
[1] Qilu Univ Technol, Coll Comp Sci & Technol, Shandong Acad Sci, Jinan, Peoples R China
关键词
Image Classification; Self-supervised Learning; Convolution Restricted Boltzmann Machine; Fuzzy C-means; CNN Model;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning has been successfully applied to computer vision, speech recognition and other domains. In image processing, the CNN model has been relatively mature in the training of labeled data. There are labeled data that need to be manually labeled in supervised learning, but now there are a large number of data without labels or with a small number of labels that need to be processed. We propose an image classification algorithm named OCFC based on self-supervised learning without manual labeling. After image preprocessing, features are extracted by three-layer Convolution Restricted Boltzmann Machine. Then the extracted feature clusters are labeled with pseudo-labels by Fuzzy C-means algorithm. Finally, the CNN model is used to classify and predict other image categories. The self-supervised learning model can be arbitrarily transferred to a shallow model or a deep model. The experimental results show that this method can effectively avoid the complexity of manually extracting features, and the accuracy on the STL-10 dataset reaches 82.7%.
引用
收藏
页码:589 / 594
页数:6
相关论文
共 50 条
  • [21] Masked Modeling-Based Ultrasound Image Classification via Self-Supervised Learning
    Xu, Kele
    You, Kang
    Zhu, Boqing
    Feng, Ming
    Feng, Dawei
    Yang, Cheng
    IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, 2024, 5 : 226 - 237
  • [22] HyperBT: Redundancy Reduction-Based Self-Supervised Learning for Hyperspectral Image Classification
    Li, Jinhui
    Li, Xiaorun
    Chen, Shuhan
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2385 - 2389
  • [23] Self-supervised learning based on StyleGAN for medical image classification on small labeled dataset
    Fan, Zong
    Wang, Zhimin
    Zhang, Chaojie
    Ozbey, Muzaffer
    Villa, Umberto
    Hao, Yao
    Zhang, Zhongwei
    Wang, Xiaowei
    Lia, Hua
    MEDICAL IMAGING 2024: IMAGE PROCESSING, 2024, 12926
  • [24] Few-Shot Hyperspectral Image Classification With Self-Supervised Learning
    Li, Zhaokui
    Guo, Hui
    Chen, Yushi
    Liu, Cuiwei
    Du, Qian
    Fang, Zhuoqun
    Wang, Yan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [25] Self-Supervised Feature Learning With CRF Embedding for Hyperspectral Image Classification
    Wang, Yuebin
    Mei, Jie
    Zhang, Liqiang
    Zhang, Bing
    Zhu, Panpan
    Li, Yang
    Li, Xingang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (05): : 2628 - 2642
  • [26] Self-Supervised Learning Guided by SAR Image Factors for Terrain Classification
    Ren, Zhongle
    Du, Zhe
    Liu, Shaobo
    Hou, Biao
    Li, Weibin
    Zhu, Hao
    Ren, Bo
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 18
  • [27] Semisupervised image classification by mutual learning of multiple self-supervised models
    Zhang, Jian
    Yang, Jianing
    Yu, Jun
    Fan, Jianping
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (05) : 3117 - 3141
  • [28] Self-supervised learning advanced plant disease image classification with SimCLR
    Songpol Bunyang
    Natdanai Thedwichienchai
    Krisna Pintong
    Nuj Lael
    Wuthipoom Kunaborimas
    Phawit Boonrat
    Thitirat Siriborvornratanakul
    Advances in Computational Intelligence, 2023, 3 (5):
  • [29] Self-supervised CondenseNet for feature learning to increase the accuracy in image classification
    Darvish-Motevali, Mahmoud
    Sohrabi, Mohammad Karim
    Roshdi, Israfil
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (32) : 77667 - 77678
  • [30] Self-supervised comparative learning based improved multiple instance learning for whole slide image classification
    Yao, Luhan
    Wang, Hongyu
    Hao, Yingguang
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 1353 - 1357