Non-integrability of some Hamiltonian systems in polar coordinates

被引:10
作者
Sansaturio, ME [1 ]
VigoAguiar, I [1 ]
Ferrandiz, JM [1 ]
机构
[1] UNIV ALICANTE,DEPT ANAL MATEMAT & MATEMAT APLICADA,EPS,E-03080 ALICANTE,SPAIN
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 16期
关键词
D O I
10.1088/0305-4470/30/16/026
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we first reformulate a non-integrability criterion obtained by Yoshida for Hamiltonian systems with two degrees of freedom in order to make it easier to handle those problems whose natural formulation is given in polar coordinates, as occurs with those that have harmonic potential. Among other applications, we prove the non-integrability of the satellite problem under McCullagh's approximation of the potential, i.e. truncated at the r(-3) term that, in most cases, is the main problem of the satellite of a triaxial primary body, hence its importance.
引用
收藏
页码:5869 / 5876
页数:8
相关论文
共 16 条
[1]   INTEGRABLE HAMILTONIAN-SYSTEMS AND THE PAINLEVE PROPERTY [J].
BOUNTIS, T ;
SEGUR, H ;
VIVALDI, F .
PHYSICAL REVIEW A, 1982, 25 (03) :1257-1264
[2]   COMMENT ON A PAPER BY KASPERCZUK,S., CELEST-MECH 58 - 387-391 (1994) [J].
ELIPE, A ;
HIETARINTA, J ;
TOMPAIDIS, S .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1995, 62 (02) :191-192
[3]   NONEXISTENCE OF RATIONAL INTEGRALS IN THE J(22)-PROBLEM [J].
FERRANDIZ, JM ;
SANSATURIO, ME .
PHYSICS LETTERS A, 1995, 207 (3-4) :180-184
[4]   Non integrability of the truncated zonal satellite Hamiltonian at any order [J].
Ferrandiz, JM ;
Sansaturio, ME ;
Vigo, I .
PHYSICS LETTERS A, 1996, 221 (3-4) :153-157
[5]  
Fridberg R., 1976, PHYS REV D, V13, P2739
[6]   ON THE NON-INTEGRABILITY OF YANG-MILLS POTENTIALS [J].
ICHTIAROGLOU, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (17) :3461-3465
[7]   Analytical non-integrability of the truncated two fixed centres problem in the symmetric case [J].
Irigoyen, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 131 (02) :267-276
[8]   NON INTEGRABILITY OF THE J(2) PROBLEM [J].
Irigoyen, Maylis ;
Simo, Carles .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1993, 55 (03) :281-287
[9]   INTEGRABILITY OF THE YANG-MILLS HAMILTONIAN SYSTEM [J].
KASPERCZUK, S .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 58 (04) :387-391
[10]   INTERNAL SYMMETRY AND SEMICLASSICAL METHOD IN QUANTUM FIELD-THEORY [J].
RAJARAMAN, R ;
WEINBERG, EJ .
PHYSICAL REVIEW D, 1975, 11 (10) :2950-2966