Characterization of Gaussian operations and distillation of Gaussian states

被引:451
作者
Giedke, G [1 ]
Cirac, JI [1 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
来源
PHYSICAL REVIEW A | 2002年 / 66卷 / 03期
关键词
D O I
10.1103/PhysRevA.66.032316
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We characterize the class of all physical operations that transform Gaussian states to Gaussian states. We show that this class coincides with that of all operations that can be performed on Gaussian states using linear optical elements and homodyne measurements. For bipartite systems we characterize the processes that can be implemented by local operations and classical communication, as well as those that can be implemented using positive partial transpose preserving maps. As an application, we show that Gaussian states cannot be distilled by local Gaussian operations and classical communication. We also define and characterize positive (but not completely positive) Gaussian maps.
引用
收藏
页数:7
相关论文
共 57 条
[1]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[2]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[3]  
BENNETT CH, QUANTPH9511027
[4]   Error correction for continuous quantum variables [J].
Braunstein, SL .
PHYSICAL REVIEW LETTERS, 1998, 80 (18) :4084-4087
[5]   Quantum error correction for communication with linear optics [J].
Braunstein, SL .
NATURE, 1998, 394 (6688) :47-49
[6]   Teleportation of continuous quantum variables [J].
Braunstein, SL ;
Kimble, HJ .
PHYSICAL REVIEW LETTERS, 1998, 80 (04) :869-872
[7]   Cloning of continuous quantum variables [J].
Cerf, NJ ;
Ipe, A ;
Rottenberg, X .
PHYSICAL REVIEW LETTERS, 2000, 85 (08) :1754-1757
[8]   Quantum distribution of Gaussian keys using squeezed states -: art. no. 052311 [J].
Cerf, NJ ;
Lévy, M ;
Van Assche, G .
PHYSICAL REVIEW A, 2001, 63 (05) :523111-523115
[9]  
CERF NJ, QUANTPH9909037
[10]   Entangling operations and their implementation using a small amount of entanglement [J].
Cirac, JI ;
Dür, W ;
Kraus, B ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 2001, 86 (03) :544-547