A route of alkylated carbon black with hydrophobicity, high dispersibility and efficient thermal conductivity

被引:16
作者
Li, Yanchen [1 ,2 ]
Zhang, Weiye [1 ,2 ]
Zhao, Junqi [2 ]
Li, Wenping [1 ]
Wang, Beibei [1 ,2 ]
Yang, Yingni [1 ,2 ]
Sun, Jingmeng [2 ]
Fang, Xiaoyang [1 ,2 ]
Xia, Rongqi [1 ,2 ]
Liu, Yi [1 ,2 ]
Guo, Hongwu [1 ,2 ]
机构
[1] Beijing Forestry Univ, Minist Educ, Key Lab Wood Mat Sci & Applicat, Beijing 100083, Peoples R China
[2] Beijing Forestry Univ, Key Lab Wood Sci & Engn, Beijing 100083, Peoples R China
基金
国家重点研发计划;
关键词
Alkylated modification; Carbon black; Hydrophobicity; High dispersibility; Efficient thermal conductivity; Interface property;
D O I
10.1016/j.apsusc.2020.147858
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High dispersibility of carbon black (CB) is a great significance to its interfacial compatibility with organic or inorganic materials. We reported a type of alkyl-carbon black (aCB) nanoparticles with hydrophobic and lipophilic properties which were modified by Octadecyl isocyanate. The water contact angle of aCB was changed from 34.3 degrees/38.9 degrees to 102 degrees, which exhibited excellent dispersion ability in organic solutions. Covalent modification of aCB was confirmed by the increase of particle size from 474 nm to 499 nm and the loss of organic groups at temperatures from 30 degrees C to 800 degrees C. After reaction between CB and Octadecyl isocyanate, the characteristic band of isocyanate (eN=C=O) disappeared and formed new amide groups or carbamate, the decrease of O 1 s and C 1 s and the increase of N 1 s confirmed the alkyl chain grafted to the surface of CB. aCB showed an organic inorganic hybrid and multi-layer substance with disordered and high crystallization capacity.
引用
收藏
页数:11
相关论文
共 28 条
[1]  
Alhaji MH, 2017, COGENT ENG, V4, DOI 10.1080/23311916.2017.1382980
[2]   Multifunctional Superhydrophobic Polymer/Carbon Nanocomposites: Graphene, Carbon Nanotubes, or Carbon Black? [J].
Asthana, Ashish ;
Maitra, Tanmoy ;
Buechel, Robert ;
Tiwari, Manish K. ;
Poulikakos, Dimos .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (11) :8859-8867
[3]   Mechanisms of surfactant adsorption on non-polar, air-oxidized and ozone-treated carbon surfaces [J].
Chen, X ;
Farber, M ;
Gao, YM ;
Kulaots, I ;
Suuberg, EM ;
Hurt, RH .
CARBON, 2003, 41 (08) :1489-1500
[4]   Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane [J].
Elias, D. C. ;
Nair, R. R. ;
Mohiuddin, T. M. G. ;
Morozov, S. V. ;
Blake, P. ;
Halsall, M. P. ;
Ferrari, A. C. ;
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Geim, A. K. ;
Novoselov, K. S. .
SCIENCE, 2009, 323 (5914) :610-613
[5]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[6]   Polyurea-functionalized multiwalled carbon nanotubes: Synthesis, morphology, and Raman spectroscopy [J].
Gao, C ;
Jin, YZ ;
Kong, H ;
Whitby, RLD ;
Acquah, SFA ;
Chen, GY ;
Qian, HH ;
Hartschuh, A ;
Silva, SRP ;
Henley, S ;
Fearon, P ;
Kroto, HW ;
Walton, DRM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (24) :11925-11932
[7]   Surface modification of carbon black nanoparticles enhances photothermal separation and release of CO2 [J].
Goetz, Samantha A. ;
Nguyen, Du T. ;
Esser-Kahn, Aaron P. .
CARBON, 2016, 105 :126-135
[8]  
Grunlan JC, 2001, J APPL POLYM SCI, V80, P692, DOI 10.1002/1097-4628(20010425)80:4<692::AID-APP1146>3.3.CO
[9]  
2-N
[10]   Adsorption of surfactants on carbon black-water interface [J].
Gupta, SD ;
Bhagwat, SS .
JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2005, 26 (01) :111-120