Coordination Chemistry Engineered Polymeric Carbon Nitride Photoanode with Ultralow Onset Potential for Water Splitting

被引:39
作者
Fan, Xiangqian [1 ,2 ]
Wang, Zhiliang [1 ,2 ]
Lin, Tongen [1 ,2 ]
Du, Du [3 ]
Xiao, Mu [1 ,2 ]
Chen, Peng [1 ,2 ]
Monny, Sabiha Akter [1 ,2 ]
Huang, Hengming [4 ]
Lyu, Miaoqiang [1 ,2 ]
Lu, Mingyuan [1 ,2 ]
Wang, Lianzhou [1 ,2 ]
机构
[1] Univ Queensland, Nanomat Ctr, Sch Chem Engn, St Lucia, Qld 4072, Australia
[2] Univ Queensland, Australian Inst Bioengn & Nanotechnol, St Lucia, Qld 4072, Australia
[3] Univ Queensland, Sch Mech & Min Engn, St Lucia, Qld 4072, Australia
[4] Nanjing Tech Univ, State Key Lab Mat Oriented Chem Engn, Coll Mat Sci & Engn, Nanjing 211816, Peoples R China
基金
澳大利亚研究理事会;
关键词
Carbon Nitride; Coordination Bonds; Interfacial Engineering; Photoanode; Water Splitting; RAY PHOTOELECTRON-SPECTROSCOPY; FLAT-BAND; FILMS; PHOTOCATALYSTS; STEP; PERFORMANCE; COMPOSITE; GROWTH; TA3N5;
D O I
10.1002/anie.202204407
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Construction of an intimate film/substrate interface is of great importance for a photoelectrode to achieve efficient photoelectrochemical performance. Inspired by coordination chemistry, a polymeric carbon nitride (PCN) film is intimately grown on a Ti-coated substrate by an in situ thermal condensation process. The as-prepared PCN photoanode exhibits a record low onset potential (E-onset) of -0.38 V versus the reversible hydrogen electrode (RHE) and a decent photocurrent density of 242 mu A cm(-2) at 1.23 V-RHE for water splitting. Detailed characterization confirms that the origin of the ultralow onset potential is mainly attributed to the substantially reduced interfacial resistance between the Ti-coated substrate and the PCN film benefitting from the constructed interfacial sp(2) N -> Ti coordination bonds. For the first time, the ultralow onset potential enables the PCN photoanode to drive water splitting without external bias with a stable photocurrent density of approximate to 9 mu A cm(-2) up to 1 hour.
引用
收藏
页数:6
相关论文
共 63 条
[1]   Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode [J].
Abdi, Fatwa F. ;
Han, Lihao ;
Smets, Arno H. M. ;
Zeman, Miro ;
Dam, Bernard ;
van de Krol, Roel .
NATURE COMMUNICATIONS, 2013, 4
[2]   Elucidating the structure of the graphitic carbon nitride nanomaterials via X-ray photoelectron spectroscopy and X-ray powder diffraction techniques [J].
Alwin, Emilia ;
Nowicki, Waldemar ;
Wojcieszak, Robert ;
Zielinski, Michal ;
Pietrowski, Mariusz .
DALTON TRANSACTIONS, 2020, 49 (36) :12805-12813
[3]  
[Anonymous], 2007, ANGEW CHEM, V119, P52
[4]  
[Anonymous], 2020, ANGEW CHEM, V132, P1155
[5]  
[Anonymous], 2012, ANGEW CHEM, V124, P70
[6]   The future of energy supply: Challenges and opportunities [J].
Armaroli, Nicola ;
Balzani, Vincenzo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (1-2) :52-66
[7]  
Barbir F., 2013, PEM Fuel Cells, V2nd ed., P33, DOI 10.1016/C2011-0-06706-6
[8]   Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications [J].
Bian, Juncao ;
Li, Qian ;
Huang, Chao ;
Li, Jianfu ;
Guo, Yao ;
Zaw, Myowin ;
Zhang, Rui-Qin .
NANO ENERGY, 2015, 15 :353-361
[9]   A CORRELATION OF AUGER-ELECTRON SPECTROSCOPY, X-RAY PHOTOELECTRON-SPECTROSCOPY, AND RUTHERFORD BACKSCATTERING SPECTROMETRY MEASUREMENTS ON SPUTTER-DEPOSITED TITANIUM NITRIDE THIN-FILMS [J].
BURROW, BJ ;
MORGAN, AE ;
ELLWANGER, RC .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1986, 4 (06) :2463-2469
[10]   Polymeric Photocatalysts Based on Graphitic Carbon Nitride [J].
Cao, Shaowen ;
Low, Jingxiang ;
Yu, Jiaguo ;
Jaroniec, Mietek .
ADVANCED MATERIALS, 2015, 27 (13) :2150-2176