The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana

被引:377
|
作者
Doyle, MR
Davis, SJ
Bastow, RM
McWatters, HG
Kozma-Bognár, L
Nagy, F
Millar, AJ
Amasino, RM [1 ]
机构
[1] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
[2] Univ Wisconsin, Mol & Cellular Biol Program, Madison, WI 53706 USA
[3] Univ Warwick, Dept Biol Sci, Coventry CV4 7AL, W Midlands, England
[4] Biol Res Ctr, Inst Plant Biol, H-6726 Szeged, Hungary
基金
英国生物技术与生命科学研究理事会; 美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1038/nature00954
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many plants use day length as an environmental cue to ensure proper timing of the switch from vegetative to reproductive growth. Day-length sensing involves an interaction between the relative length of day and night, and endogenous rhythms that are controlled by the plant circadian clock(1). Thus, plants with defects in circadian regulation cannot properly regulate the timing of the floral transition(2). Here we describe the gene EARLY FLOWERING 4 (ELF4), which is involved in photoperiod perception and circadian regulation. ELF4 promotes clock accuracy and is required for sustained rhythms in the absence of daily light/dark cycles. elf4 mutants show attenuated expression of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), a gene that is thought to function as a central oscillator component(3,4). In addition, elf4 plants transiently show output rhythms with highly variable period lengths before becoming arrhythmic. Mutations in elf4 result in early flowering in non-inductive photoperiods, which is probably caused by elevated amounts of CONSTANS (CO), a gene that promotes floral induction(5).
引用
收藏
页码:74 / 77
页数:4
相关论文
共 50 条
  • [31] Controlling Circadian Rhythms by Dark-Pulse Perturbations in Arabidopsis thaliana
    Fukuda, Hirokazu
    Murase, Haruhiko
    Tokuda, Isao T.
    SCIENTIFIC REPORTS, 2013, 3
  • [32] Modulation of copper deficiency responses by diurnal and circadian rhythms in Arabidopsis thaliana
    Perea-Garcia, Ana
    Andres-Borderia, Amparo
    Mayo de Andres, Sonia
    Sanz, Amparo
    Davis, Amanda M.
    Davis, Seth J.
    Huijser, Peter
    Penarrubia, Lola
    JOURNAL OF EXPERIMENTAL BOTANY, 2016, 67 (01) : 391 - 403
  • [33] The ELF4–ELF3–LUX complex links the circadian clock to diurnal control of hypocotyl growth
    Dmitri A. Nusinow
    Anne Helfer
    Elizabeth E. Hamilton
    Jasmine J. King
    Takato Imaizumi
    Thomas F. Schultz
    Eva M. Farré
    Steve A. Kay
    Nature, 2011, 475 : 398 - 402
  • [34] ORANGE negatively regulates flowering time in Arabidopsis thaliana
    Wang, Qi
    Wang, Guang-Ling
    Song, Shu-Yuan
    Zhao, Ya-Nan
    Lu, Shan
    Zhou, Fei
    JOURNAL OF PLANT PHYSIOLOGY, 2022, 274
  • [35] QTL ANALYSIS OF FLOWERING TIME IN ARABIDOPSIS-THALIANA
    CLARKE, JH
    MITHEN, R
    BROWN, JKM
    DEAN, C
    MOLECULAR & GENERAL GENETICS, 1995, 248 (03): : 278 - 286
  • [36] Genetic basis of adaptation: flowering time in Arabidopsis thaliana
    H. Kuittinen
    M. J. Sillanpää
    O. Savolainen
    Theoretical and Applied Genetics, 1997, 95 : 573 - 583
  • [37] A thermosensory pathway controlling flowering time in Arabidopsis thaliana
    Miguel A. Blázquez
    Ji Hoon Ahn
    Detlef Weigel
    Nature Genetics, 2003, 33 : 168 - 171
  • [38] Genetic basis of adaptation: flowering time in Arabidopsis thaliana
    Kuittinen, H
    Sillanpaa, MJ
    Savolainen, O
    THEORETICAL AND APPLIED GENETICS, 1997, 95 (04) : 573 - 583
  • [39] A thermosensory pathway controlling flowering time in Arabidopsis thaliana
    Blázquez, MA
    Ahn, JH
    Weigel, D
    NATURE GENETICS, 2003, 33 (02) : 168 - 171
  • [40] Fitness effects associated with the major flowering time gene FRIGIDA in Arabidopsis thaliana in the field
    Korves, Tonia M.
    Schmid, Karl J.
    Caicedo, Ana L.
    Mays, Charlotte
    Stinchcombe, John R.
    Purugganan, Michael D.
    Schmitt, Johanna
    AMERICAN NATURALIST, 2007, 169 (05): : E141 - E157