ERROR ESTIMATES FOR SECOND-ORDER SAV FINITE ELEMENT METHOD TO PHASE FIELD CRYSTAL MODEL

被引:7
作者
Wang, Liupeng [1 ]
Huang, Yunqing [2 ]
机构
[1] Hunan Inst Engn, Sch Computat Sci & Elect, Xiangtan 411104, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2021年 / 29卷 / 01期
基金
中国国家自然科学基金;
关键词
Error estimates; energy stability; finite element method; scalar auxiliary variable approach; Crank-Nicolson scheme; phase field crystal model; DISCONTINUOUS GALERKIN METHOD; DIFFERENCE SCHEME; CONVERGENCE; STABILITY;
D O I
10.3934/era.2020089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the second-order scalar auxiliary variable approach in time and linear finite element method in space are employed for solving the Cahn-Hilliard type equation of the phase field crystal model. The energy stability of the fully discrete scheme and the boundedness of numerical solution are studied. The rigorous error estimates of order O (tau(2) + h(2)) in the sense of L-2-norm is derived. Finally, some numerical results are given to demonstrate the theoretical analysis.
引用
收藏
页码:1735 / 1752
页数:18
相关论文
共 31 条
  • [1] Deriving phase field crystal theory from dynamical density functional theory: Consequences of the approximations
    Archer, Andrew J.
    Ratliff, Daniel J.
    Rucklidge, Alastair M.
    Subramanian, Priya
    [J]. PHYSICAL REVIEW E, 2019, 100 (02)
  • [2] CONVERGENCE ANALYSIS OF A SECOND ORDER CONVEX SPLITTING SCHEME FOR THE MODIFIED PHASE FIELD CRYSTAL EQUATION
    Baskaran, A.
    Lowengrub, J. S.
    Wang, C.
    Wise, S. M.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (05) : 2851 - 2873
  • [3] C0 Interior Penalty Methods
    Brenner, Susanne C.
    [J]. FRONTIERS IN NUMERICAL ANALYSIS - DURHAM 2010, 2012, 85 : 78 - 146
  • [4] An efficient algorithm for solving the phase field crystal model
    Cheng, Mowei
    Warren, James A.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (12) : 6241 - 6248
  • [5] Phase-field crystal modeling and classical density functional theory of freezing
    Elder, K. R.
    Provatas, Nikolas
    Berry, Joel
    Stefanovic, Peter
    Grant, Martin
    [J]. PHYSICAL REVIEW B, 2007, 75 (06)
  • [6] Elder KR, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.051605
  • [7] Modeling elasticity in crystal growth
    Elder, KR
    Katakowski, M
    Haataja, M
    Grant, M
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (24) : 2457011 - 2457014
  • [8] Eyre D.J., 1998, An unconditionally stable one-step scheme for gradient systems, P1
  • [9] An unconditionally energy-stable method for the phase field crystal equation
    Gomez, Hector
    Nogueira, Xesus
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 249 : 52 - 61
  • [10] ENERGY STABLE AND CONVERGENT FINITE ELEMENT SCHEMES FOR THE MODIFIED PHASE FIELD CRYSTAL EQUATION
    Grasselli, Maurizio
    Pierre, Morgan
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (05): : 1523 - 1560