Generalization of Hensel's lemma: Finding the roots of p-adic Lipschitz functions

被引:8
作者
Axelsson, Ekaterina Yurova [1 ]
Khrennikov, Andrei [1 ]
机构
[1] Linnaeus Univ, Int Ctr Math Modelling Phys & Cognit Sci, S-35195 Vaxjo, Sweden
关键词
p-Adics; Hensel's lifting lemma; Lipschitz function; Van der Put series; DYNAMICAL-SYSTEMS; VAN; ERGODICITY; CRITERIA; TERMS;
D O I
10.1016/j.jnt.2015.06.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the problem of finding the roots of p-adic functions. In the case, where the function is defined by a polynomial with integer p-adic coefficients, using Hensel's lifting lemma helps us find the roots of the p-adic function. We generalize Hensel's lifting lemma for a wider class of p-adic functions, namely, the functions which satisfy the Lipschitz condition with constant p(alpha), alpha >= 0, in particular, the functions of this class may be non-differentiable. The paper also presents an iterative procedure for finding approximate (in p-adic metric) values of the root of p(alpha)-Lipschitz functions, thus generalizing the p-adic analogue of Newton's method for such a class of functions. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:217 / 233
页数:17
相关论文
共 24 条
[11]   Toward the ergodicity of p-adic 1-Lipschitz functions represented by the van der Put series [J].
Jeong, Sangtae .
JOURNAL OF NUMBER THEORY, 2013, 133 (09) :2874-2891
[12]  
Katok S., 2007, STUD MATH LIB, V37
[13]   Criteria of ergodicity for p-adic dynamical systems in terms of coordinate functions [J].
Khrennikov, Andrei ;
Yurova, Ekaterina .
CHAOS SOLITONS & FRACTALS, 2014, 60 :11-30
[14]   Criteria of measure-preserving for p-adic dynamical systems in terms of the van der Put basis [J].
Khrennikov, Andrei ;
Yurova, Ekaterina .
JOURNAL OF NUMBER THEORY, 2013, 133 (02) :484-491
[15]  
Koblitz N., 1977, p-Adic Numbers, p-Adic Analysis and Zeta-Function
[16]  
Lazard M., 1962, Inst. Hautes Etudes Sci. Publ. Math., V14, P47
[17]  
MAHLER K, 1981, P ADIC NUMBERS THEIR
[18]  
Schikhof W. H., 1984, Ultrametric calculus. An introduction to -adic analysis
[19]  
van der Put M., 1968, INDAG MATH, V71, P412
[20]  
van der Put M., 1968, NEDERL AKAD WETENS A, V71, P401