Comment on "Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems" [Appl. Math. Comput. 218 (2012) 11859-11870]

被引:6
作者
Algaba, Antonio [1 ]
Fernandez-Sanchez, Fernando [2 ]
Merino, Manuel [1 ]
Rodriguez-Luis, Alejandro J. [2 ]
机构
[1] Univ Huelva, Fac Ciencias Expt, Dept Matemat, Huelva 21071, Spain
[2] Univ Seville, ES Ingenieros, Dept Matemat Aplicada 2, Seville 41092, Spain
关键词
Undetermined coefficient method; Heteroclinic/Homoclinic orbit; Silnikov criterion; Lu system; Zhou system; Chen system; LORENZ-FAMILY SYSTEMS; SILNIKOV-TYPE ORBITS; SHILNIKOV TYPE; 2-DIMENSIONAL AIRFOIL; CUBIC NONLINEARITY; SUPERSONIC-FLOW; CHEN CIRCUIT; TIME-DELAY; ATTRACTOR; MOTIONS;
D O I
10.1016/j.amc.2014.06.085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the commented paper, the authors claim to have proved the existence of heteroclinic and homoclinic orbits of Silnikov type in two-Lorenz like systems, the so-called Lu and Zhou systems. According to them, they have analytically demonstrated that both systems exhibit Smale horseshoe chaos. Unfortunately, we show that the results they obtain are incorrect. In the proof, they use the undetermined coefficient method, introduced by Zhou et al. in [Chen's attractor exists, Int. J. Bifurcation Chaos 14 (2004) 3167-3178], a paper that presents very serious shortcomings. However, it has been cited dozens of times and its erroneous method has been copied in lots of papers, including the commented paper where a misuse of a time-reversibility property leads the authors to use an odd (even) expression for the first component of the heteroclinic (homoclinic) connection. It is evident that this odd (even) expression cannot represent the first component of a Silnikov heteroclinic (homoclinic) connection, an orbit which is necessarily non-symmetric. Consequently, all their results, stated in Theorems 3-5, are invalid. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:49 / 56
页数:8
相关论文
共 52 条
  • [1] Algaba A, 2012, ENERGY, V40, P291
  • [2] Algaba A., 2008, CHAOS, V18
  • [3] The Lu system is a particular case of the Lorenz system
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    [J]. PHYSICS LETTERS A, 2013, 377 (39) : 2771 - 2776
  • [4] Chen's attractor exists if Lorenz repulsor exists: The Chen system is a special case of the Lorenz system
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    [J]. CHAOS, 2013, 23 (03)
  • [5] On Shil'nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2013, 8 (02):
  • [6] Comment on Silnikov-type orbits of Lorenz-family systems' [Physica A 375 (2007) 438-446]
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (19) : 4252 - 4257
  • [7] Chaotic motions of a two-dimensional airfoil with cubic nonlinearity in supersonic flow
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    [J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2013, 28 (01) : 431 - 434
  • [8] Comments on "Analysis and application of a novel three-dimensional energy-saving and emission-reduction dynamic evolution system" [Energy 40 (2012) 291-299]
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    [J]. ENERGY, 2012, 47 (01) : 630 - 633
  • [9] Comment on 'Stability and chaos of a damped satellite partially filled with liquid' [Acta Astronautica 65 (2009) 1628-1638]
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    [J]. ACTA ASTRONAUTICA, 2012, 80 : 36 - 39
  • [10] Rebuttal of "Existence of attractor and control of a 3D differential system" by Z. Wang
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    [J]. NONLINEAR DYNAMICS, 2012, 69 (04) : 2289 - 2291