Anisotropic tunneling magnetoresistance and tunneling anisotropic magnetoresistance: Spin-orbit coupling in magnetic tunnel junctions

被引:96
作者
Matos-Abiague, A. [1 ]
Fabian, J. [1 ]
机构
[1] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
关键词
Fermi surface; ferromagnetic materials; gallium arsenide; III-V semiconductors; iron; magnetisation; spin-orbit interactions; tunnelling magnetoresistance; INVERSION; TEMPERATURE; ASYMMETRY; AU(111); STATES; GAP;
D O I
10.1103/PhysRevB.79.155303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effects of the spin-orbit coupling (SOC) on the tunneling magnetoresistance of ferromagnet/semiconductor/normal-metal tunnel junctions are investigated. Analytical expressions for the tunneling anisotropic magnetoresistance (TAMR) are derived within an approximation in which the dependence of the magnetoresistance on the magnetization orientation in the ferromagnet originates from the interference between Bychkov-Rashba and Dresselhaus SOCs that appear at junction interfaces and in the tunneling region. We also investigate the TAMR effect in ferromagnet/semiconductor/ferromagnet tunnel junctions. The conventional tunneling magnetoresistance (TMR) measures the difference between the magnetoresistance in parallel and antiparallel configurations. We show that in ferromagnet/semiconductor/ferromagnet heterostructures, because of the SOC effects, the conventional TMR becomes anisotropic-we refer to it as the anisotropic tunneling magnetoresistance (ATMR). The ATMR describes the changes in the TMR when the axis along which the parallel and antiparallel configurations are defined is rotated with respect to a crystallographic reference axis. Within the proposed model, depending on the magnetization directions in the ferromagnets, the interplay of Bychkov-Rashba and Dresselhaus SOCs produces differences between the rates of transmitted and reflected spins at the ferromagnet/semiconductor interfaces, which results in an anisotropic local density of states at the Fermi surface and in the TAMR and ATMR effects. Model calculations for Fe/GaAs/Fe tunnel junctions are presented. Finally, based on rather general symmetry considerations, we deduce the form of the magnetoresistance dependence on the absolute orientations of the magnetizations in the ferromagnets.
引用
收藏
页数:19
相关论文
共 55 条
[1]  
Aschcroft N., 1976, Solid State Physics
[2]   Giant spin relaxation anisotropy in zinc-blende heterostructures [J].
Averkiev, NS ;
Golub, LE .
PHYSICAL REVIEW B, 1999, 60 (23) :15582-15584
[3]  
BADALYAN SM, ARXIV08043366
[4]   Anisotropic magnetoresistance and anisotropic tunneling magnetoresistance due to quantum interference in ferromagnetic metal break junctions [J].
Bolotin, Kirill I. ;
Kuemmeth, Ferdinand ;
Ralph, D. C. .
PHYSICAL REVIEW LETTERS, 2006, 97 (12)
[5]   Tunnel magnetoresistance in GaMnAs:: Going beyond julliere formula [J].
Brey, L ;
Tejedor, C ;
Fernández-Rossier, J .
APPLIED PHYSICS LETTERS, 2004, 85 (11) :1996-1998
[6]   Effect of tip resonances on tunneling anisotropic magnetoresistance in ferromagnetic metal break-junctions: A first-principles study [J].
Burton, J. D. ;
Sabirianov, R. F. ;
Velev, J. P. ;
Mryasov, O. N. ;
Tsymbal, E. Y. .
PHYSICAL REVIEW B, 2007, 76 (14)
[7]   OSCILLATORY EFFECTS AND THE MAGNETIC-SUSCEPTIBILITY OF CARRIERS IN INVERSION-LAYERS [J].
BYCHKOV, YA ;
RASHBA, EI .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (33) :6039-6045
[8]   Anisotropic conductivity of disordered two-dimensional electron gases due to spin-orbit interactions [J].
Chalaev, Oleg ;
Loss, Daniel .
PHYSICAL REVIEW B, 2008, 77 (11)
[9]   Tunneling anisotropic magnetoresistance driven by resonant surface states: First-principles calculations on an Fe(001) surface [J].
Chantis, Athanasios N. ;
Belashchenko, Kirill D. ;
Tsymbal, Evgeny Y. ;
van Schilfgaarde, Mark .
PHYSICAL REVIEW LETTERS, 2007, 98 (04)
[10]   Anisotropic spin transport in GaAs quantum wells in the presence of competing Dresselhaus and Rashba spin-orbit coupling [J].
Cheng, J. L. ;
Wu, M. W. ;
Lima, I. C. da Cunha .
PHYSICAL REVIEW B, 2007, 75 (20)