Spatially Confined Assembly of Monodisperse Ruthenium Nanoclusters in a Hierarchically Ordered Carbon Electrode for Efficient Hydrogen Evolution

被引:154
作者
Wang, Zhong-Li [1 ]
Sun, Keju [2 ]
Henzie, Joel [1 ]
Hao, Xianfeng [2 ]
Li, Cuiling [1 ]
Takei, Toshiaki [1 ]
Kang, Yong-Mook [3 ]
Yamauchi, Yusuke [4 ,5 ,6 ]
机构
[1] NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[2] Yanshan Univ, Coll Environm & Chem Engn, Qinhuangdao 066004, Peoples R China
[3] Dongguk Univ Seoul, Dept Energy & Mat Engn, Seoul 04620, South Korea
[4] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
[5] Univ Queensland, AIBN, Brisbane, Qld 4072, Australia
[6] Kyung Hee Univ, Dept Plant & Environm New Resources, Gyeonggi Do 17104, South Korea
基金
澳大利亚研究理事会;
关键词
electrocatalysis; integrated electrodes; metal nanoclusters; polyaniline; ruthenium; HIGH-PERFORMANCE; HIGHLY EFFICIENT; DOPED CARBON; ELECTROCATALYSTS; POLYANILINE; NANOTUBES; ELECTROCHEMISTRY; NANOPARTICLES; ADSORPTION; CATALYSTS;
D O I
10.1002/anie.201801467
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The redox units of polyaniline (PAni) are used cooperatively, and insitu, to assemble ruthenium (Ru) nanoclusters in a hierarchically ordered carbon electrode. The oxidized quinonoid imine (QI) units in PAni bond Ru complex ions selectively, whereas reduced benzenoid amine (BA) units cannot. By electrochemically tuning the ratio of QI to BA, Ru complexes are spatially confined in the outer layer of hierarchical PAni frameworks. Carbonization of Ru-PAni hybrids induces nucleation on the outer surface of the carbon support, generating nearly monodisperse Ru nanoclusters. The optimized catalyst has a low loading of approximately 2 wt% Ru, but exhibits a mass activity for the hydrogen evolution reaction that is about 6.8 times better than commercial 20 wt% Pt/C catalyst.
引用
收藏
页码:5848 / 5852
页数:5
相关论文
共 47 条
[41]   Molybdenum-Carbide-Modified Nitrogen-Doped Carbon Vesicle Encapsulating Nickel Nanoparticles: A Highly Efficient, Low-Cost Catalyst for Hydrogen Evolution Reaction [J].
Wang, Shiping ;
Wang, Jing ;
Zhu, Minglei ;
Bao, Xiaobing ;
Xiao, Bingyang ;
Su, Diefeng ;
Li, Haoran ;
Wang, Yong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (50) :15753-15759
[42]   Integration of Hippo signalling and the unfolded protein response to restrain liver overgrowth and tumorigenesis [J].
Wu, Hongtan ;
Wei, Luyao ;
Fan, Fuqin ;
Ji, Suyuan ;
Zhang, Shihao ;
Geng, Jing ;
Hong, Lixin ;
Fan, Xin ;
Chen, Qinghua ;
Tian, Jing ;
Jiang, Mingting ;
Sun, Xiufeng ;
Jin, Changnan ;
Yin, Zhen-Yu ;
Liu, Qingxu ;
Zhang, Jinjia ;
Qin, Funiu ;
Lin, Kwang-Huei ;
Yu, Jau-Song ;
Deng, Xianming ;
Wang, Hong-Rui ;
Zhao, Bin ;
Johnson, Randy L. ;
Chen, Lanfen ;
Zhou, Dawang .
NATURE COMMUNICATIONS, 2015, 6
[43]   A new view for nanoparticle assemblies: from crystalline to binary cooperative complementarity [J].
Yan, Cong ;
Wang, Tie .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (05) :1483-1509
[44]   High-Performance Overall Water Splitting Electrocatalysts Derived from Cobalt-Based Metal-Organic Frameworks [J].
You, Bo ;
Jiang, Nan ;
Sheng, Meili ;
Gul, Sheraz ;
Yano, Junko ;
Sun, Yujie .
CHEMISTRY OF MATERIALS, 2015, 27 (22) :7636-7642
[45]  
Zheng Y, 2015, ANGEW CHEM, V127, P52
[46]   High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst [J].
Zheng, Yao ;
Jiao, Yan ;
Zhu, Yihan ;
Li, Lu Hua ;
Han, Yu ;
Chen, Ying ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (49) :16174-16181
[47]   Advancing the Electrochemistry of the Hydrogen-Evolution Reaction through Combining Experiment and Theory [J].
Zheng, Yao ;
Jiao, Yan ;
Jaroniec, Mietek ;
Qiao, Shi Zhang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (01) :52-65