Two results about Matula numbers

被引:0
作者
Burgos, Albert [1 ]
机构
[1] Univ Murcia, E-30100 Murcia, Spain
关键词
Matula numbers; Encoding scheme; Information entropy;
D O I
10.1016/j.disc.2014.01.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Matula (1968), D.W. Matula described a bijection between N and the set of rooted trees; the number is called the Matula number of the rooted tree. The Gutman-Ivic-Matula (GIM) function g(n) computes the number of edges of the tree with Matula number n. Since there is a prefix-free code for the set of prime numbers such that the codelength of each prime p is 2g(p), we show how some results about the GIM function can be obtained trivially from coding theorems. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 62
页数:5
相关论文
共 12 条
  • [1] Alon N., 2008, ELEMENTS INFORM THEO
  • [2] Cover T.M., 2006, ELEMENTS INFORM THEO, V2nd ed
  • [3] The inverse problem for certain tree parameters
    Czabarka, Eva
    Szekely, Laszlo
    Wagner, Stephan
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (15) : 3314 - 3319
  • [4] De la Bretèche R, 2000, ANN I FOURIER, V50, P1445
  • [5] Rooted tree statistics from Matula numbers
    Deutsch, Emeric
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (15) : 2314 - 2322
  • [7] On Matula numbers
    Gutman, I
    Ivic, A
    [J]. DISCRETE MATHEMATICS, 1996, 150 (1-3) : 131 - 142
  • [8] Gutman I., 1993, PUBL I MATH-BEOGRAD, V53, P17
  • [9] Gutman I., 1993, J SERB CHEM SOC, V58, P193
  • [10] Kraft L. G., 1949, PhD thesis