Protection of p+-n-Si Photoanodes by Sputter-Deposited Ir/IrOx Thin Films

被引:100
作者
Mei, Bastian [1 ]
Seger, Brian [1 ]
Pedersen, Thomas [2 ]
Malizia, Mauro [1 ]
Hansen, Ole [2 ]
Chorkendorff, Ib [1 ]
Vesborg, Peter C. K. [1 ]
机构
[1] Tech Univ Denmark, CINF, Dept Phys, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Dept Micro & Nanotechnol, DK-2800 Lyngby, Denmark
基金
新加坡国家研究基金会;
关键词
WATER OXIDATION; PHOTOELECTROCHEMICAL BEHAVIOR; SILICON PHOTOANODES; OXYGEN EVOLUTION; IRIDIUM OXIDE; SI PHOTOANODE; LAYER; IRO2; PERFORMANCE; ELECTRODES;
D O I
10.1021/jz500865g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sputter deposition of Ir/IrOx on p(+)-n-Si without interfacial corrosion protection layers yielded photoanodes capable of efficient water oxidation (OER) in acidic media (1 M H2SO4). Stability of at least 18 h was shown by chronoamperomety at 1.23 V versus RHE (reversible hydrogen electrode) under 38.6 mW/cm(2) simulated sunlight irradiation (lambda > 635 nm, AM 1.5G) and measurements with quartz crystal microbalances. Films exceeding a thickness of 4 nm were shown to be highly active though metastable due to an amorphous character. By contrast, 2 nm IrOx films were stable, enabling OER at a current density of 1 rnA/cm(2) at 1.05 V vs. RHE. Further improvement by heat treatment resulted in a cathodic shift of 40 mV and enabled a current density of 10 mA/cm(2) (requirements for a 10% efficient tandem device) at 1.12 V vs. RI-IS under irradiation. Thus, the simple IrOx/Ir/p(+)-n-Si structures not only provide the necessary overpotential for OER at realistic device current, but also harvest similar to 100 mV of free energy (voltage) which makes them among the best-performing Si-based photoanodes in low-pH media.
引用
收藏
页码:1948 / 1952
页数:5
相关论文
共 32 条
[1]   Iridium As Catalyst and Cocatalyst for Oxygen Evolution/Reduction in Acidic Polymer Electrolyte Membrane Electrolyzers and Fuel Cells [J].
Antolini, Ermete .
ACS CATALYSIS, 2014, 4 (05) :1426-1440
[2]  
Chen YW, 2011, NAT MATER, V10, P539, DOI [10.1038/NMAT3047, 10.1038/nmat3047]
[3]   Solar cell efficiency tables (version 42) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2013, 21 (05) :827-837
[4]   AMORPHOUS-NONMETAL TO CRYSTALLINE-METAL TRANSITION IN ELECTROCHROMIC IRIDIUM OXIDE-FILMS [J].
HACKWOOD, S ;
DAYEM, AH ;
BENI, G .
PHYSICAL REVIEW B, 1982, 26 (02) :471-478
[5]   Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems [J].
Haussener, Sophia ;
Xiang, Chengxiang ;
Spurgeon, Joshua M. ;
Ardo, Shane ;
Lewis, Nathan S. ;
Weber, Adam Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (12) :9922-9935
[6]   An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems [J].
Hu, Shu ;
Xiang, Chengxiang ;
Haussener, Sophia ;
Berger, Alan D. ;
Lewis, Nathan S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (10) :2984-2993
[7]   Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion [J].
Katsounaros, Ioannis ;
Cherevko, Serhiy ;
Zeradjanin, Aleksandar R. ;
Mayrhofer, Karl J. J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (01) :102-121
[8]   High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation [J].
Kenney, Michael J. ;
Gong, Ming ;
Li, Yanguang ;
Wu, Justin Z. ;
Feng, Ju ;
Lanza, Mario ;
Dai, Hongjie .
SCIENCE, 2013, 342 (6160) :836-840
[9]   Annealing effects on the structural properties of IrO2 thin films [J].
Kim, Hyoun Woo ;
Shim, Seung Hyun ;
Myung, Ju Hyun ;
Lee, Chongmu .
VACUUM, 2008, 82 (12) :1400-1403
[10]   X-RAY PHOTOELECTRON-SPECTROSCOPY AND ELECTROCHEMICAL SURFACE CHARACTERIZATION OF IRO2 + RUO2 ELECTRODES [J].
KODINTSEV, IM ;
TRASATTI, S ;
RUBEL, M ;
WIECKOWSKI, A ;
KAUFHER, N .
LANGMUIR, 1992, 8 (01) :283-290