Hyper-Kahler sigma models on (co)tangent bundles with SO(n) isometry

被引:33
作者
Arai, Masato
Nitta, Muneto
机构
[1] Univ Helsinki, High Energy Phys Div, Dept Phys Sci, FIN-00014 Helsinki, Finland
[2] Helsinki Inst Phys, FIN-00014 Helsinki, Finland
[3] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan
基金
日本学术振兴会;
关键词
D O I
10.1016/j.nuclphysb.2006.03.033
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct N = 2 supersymmetric nonlinear sigma models whose target spaces are tangent as well as cotangent bundles over the quadric surface Q(n-2) = SO(n)/[SO(n-2)xU(1)] We use the projective superspace framework, which is an off-shell formalism of N = 2 supersymmetry. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:208 / 235
页数:28
相关论文
共 111 条
[1]   NONLINEAR SIGMA-MODELS AND THEIR Q-LUMP SOLUTIONS [J].
ABRAHAM, E .
PHYSICS LETTERS B, 1992, 278 (03) :291-296
[2]   MORE ON Q-KINKS - A (1 + 1)-DIMENSIONAL ANALOG OF DYONS [J].
ABRAHAM, ERC ;
TOWNSEND, PK .
PHYSICS LETTERS B, 1992, 295 (3-4) :225-232
[3]   Q-KINKS [J].
ABRAHAM, ERC ;
TOWNSEND, PK .
PHYSICS LETTERS B, 1992, 291 (1-2) :85-88
[4]   GEOMETRICAL STRUCTURE AND ULTRAVIOLET FINITENESS IN THE SUPERSYMMETRIC SIGMA-MODEL [J].
ALVAREZGAUME, L ;
FREEDMAN, DZ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 80 (03) :443-451
[5]   POTENTIALS FOR THE SUPERSYMMETRIC NON-LINEAR SIGMA-MODEL [J].
ALVAREZGAUME, L ;
FREEDMAN, DZ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 91 (01) :87-101
[6]   RICCI-FLAT KAHLER-MANIFOLDS AND SUPERSYMMETRY [J].
ALVAREZGAUME, L ;
FREEDMAN, DZ .
PHYSICS LETTERS B, 1980, 94 (02) :171-173
[7]   Higgs branch, hyper-Kahler quotient and duality in SUSY N = 2 Yang-Mills theories [J].
Antoniadis, I ;
Pioline, B .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (27) :4907-4931
[8]  
Arai M., 2005, [Ядерная физика, Yadernaya fizika], V68, P1698
[9]   Massive hyper-Kahler sigma models and BPS domain walls [J].
Arai, M ;
Nitta, M ;
Sakai, N .
PHYSICS OF ATOMIC NUCLEI, 2005, 68 (10) :1634-1642
[10]   Vacua of massive hyper-Kahler sigma models with non-Abelian quotient [J].
Arai, M ;
Nitta, M ;
Sakai, N .
PROGRESS OF THEORETICAL PHYSICS, 2005, 113 (03) :657-685