Enhanced thermal stability of lead-free high temperature 0.75BiFeO3-0.25BaTiO3 ceramics with excess Bi content

被引:103
作者
Chen, Jianguo [1 ]
Cheng, Jinrong [1 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
High temperature piezoelectric ceramics; BiFeO3-BaTiO3 solid solutions; Dielectric and piezoelectric properties; PIEZOELECTRIC PROPERTIES; ELECTRICAL-PROPERTIES; BIFEO3-BATIO3; CERAMICS; SINTERING TEMPERATURE; ORIGIN;
D O I
10.1016/j.jallcom.2013.11.169
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lead-free high temperature 0.75BiFeO(3)-0.25BaTiO(3) (0.75BF-0.25BT) ceramics with different excess Bi contents were prepared by solid state reaction method. XRD results indicated that the modified 0.75BF-0.25BT ceramics exhibited single perovskite structure with pseudo-cubic symmetry. The room temperature piezoelectric constant d(33) a nd remnant polarization P-r were improved by the introduction of excess Bi content, while the temperature stability of dielectric and piezoelectric properties were enhanced. The 0.75BF-0.25BT ceramics with 1% excess Bi had a Curie temperature T-c of 508 degrees C, dielectric constant epsilon of 440, loss tan theta (1 kHz) of 4.6%, remnant polarization of 34.4 mu C/cm(2), piezoelectric constant d(33) of 114 pC/N, and planar electromechanical coupling factor k(p) of 0.31. The piezoelectric constant d(33), and planner electromechanical coupling factor k(p) of 0.75BF-0.25BT ceramics with 1% excess Bi were stable up to 450 degrees C, about 300 degrees C higher than that of PZT-based ceramics. The combination of improved piezoelectric constant d(33) and electrical temperature stability indicated that 0.75BF-0.25BT ceramics with proper concentration of excess Bi were promising candidates for high-temperature and lead-free piezoelectric applications. (C) 2013 Elsevier B. V. All rights reserved.
引用
收藏
页码:115 / 119
页数:5
相关论文
共 27 条
[1]   Origin of morphotropic phase boundaries in ferroelectrics [J].
Ahart, Muhtar ;
Somayazulu, Maddury ;
Cohen, R. E. ;
Ganesh, P. ;
Dera, Przemyslaw ;
Mao, Ho-Kwang ;
Hemley, Russell J. ;
Ren, Yang ;
Liermann, Peter ;
Wu, Zhigang .
NATURE, 2008, 451 (7178) :545-U2
[2]   Effect of ZnO and CuO on the sintering temperature and piezoelectric properties of a hard piezoelectric ceramic [J].
Ahn, CW ;
Song, HC ;
Nahm, S ;
Priya, S .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2006, 89 (03) :921-925
[3]   Effect of Zr4+ substitution on thermal stability and electrical properties of high temperature BiFe0.99Al0.01O3-BaTi1-xZrxO3 ceramics [J].
Cen, Zhenyong ;
Zhou, Changrong ;
Cheng, Jun ;
Zhou, Xiujuan ;
Li, Weizhou ;
Yan, Chunle ;
Feng, Songlin ;
Liu, Yueqiang ;
Lao, Daosong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 567 :110-114
[4]   Diffused phase transition and multiferroic properties of 0.57(B1-xLax)FeO3-0.43PbTiO3 crystalline solutions [J].
Chen, Jianguo ;
Qi, Yufa ;
Shi, Guiyang ;
Yan, Xiaolong ;
Yu, Shengwen ;
Cheng, Jinrong .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (06)
[5]   RELATION BETWEEN CHEMICAL, MECHANICAL, AND ELECTRICAL-PROPERTIES OF NB2O5-MODIFIED 95 MOL-PERCENT PBZRO3-5 MOL-PERCENT PBTIO3 [J].
DUNGAN, RH ;
STORZ, LJ .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1985, 68 (10) :530-533
[6]   High-pressure synthesis and ferroelectric properties in perovskite-type BiScO3-PbTiO3 solid solution [J].
Inaguma, Y ;
Miyaguchi, A ;
Yoshida, M ;
Katsumata, T ;
Shimojo, Y ;
Wang, RP ;
Sekiya, T .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (01) :231-235
[7]   First-principles study of (BiScO3)1-x-(PbTiO3)x piezoelectric alloys -: art. no. 224107 [J].
Iñiguez, J ;
Vanderbilt, D ;
Bellaiche, L .
PHYSICAL REVIEW B, 2003, 67 (22)
[8]   INVESTIGATION OF THE MAGNETOELECTRIC (ME)H EFFECT IN SOLID-SOLUTIONS OF THE SYSTEMS BIFEO3-BATIO3 AND BIFEO3-PBTIO3 [J].
ISMAILZADE, IH ;
ISMAILOV, RM ;
ALEKBEROV, AI ;
SALAEV, FM .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1981, 68 (01) :K81-K85
[9]   Fabrication and characterization of BiFeO3-BaTiO3 ceramics by solid state reaction [J].
Itoh, Naoyuki ;
Shimura, Tetsuo ;
Sakamoto, Wataru ;
Yogo, Toshinobu .
FERROELECTRICS, 2007, 356 :311-315
[10]  
Jaffe B., 1971, Piezoelectric Ceramics