Dark-and bright-rogue-wave solutions for media with long-wave-short-wave resonance

被引:80
作者
Chen, Shihua [1 ]
Grelu, Philippe [2 ]
Soto-Crespo, J. M. [3 ]
机构
[1] SE Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China
[2] Univ Bourgogne, UMR Associee CNRS 6303, Lab Interdisciplinaire Carnot Bourgogne, F-21078 Dijon, France
[3] CSIC, Inst Opt, E-28006 Madrid, Spain
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 01期
基金
中国国家自然科学基金;
关键词
SOLITONS; EQUATIONS;
D O I
10.1103/PhysRevE.89.011201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark-and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves.
引用
收藏
页数:5
相关论文
共 34 条
  • [1] Waves that appear from nowhere and disappear without a trace
    Akhmediev, N.
    Ankiewicz, A.
    Taki, M.
    [J]. PHYSICS LETTERS A, 2009, 373 (06) : 675 - 678
  • [2] Rogue waves and rational solutions of the Hirota equation
    Ankiewicz, Adrian
    Soto-Crespo, J. M.
    Akhmediev, Nail
    [J]. PHYSICAL REVIEW E, 2010, 81 (04):
  • [3] Are rogue waves robust against perturbations?
    Ankiewicz, Adrian
    Devine, N.
    Akhmediev, Nail
    [J]. PHYSICS LETTERS A, 2009, 373 (43) : 3997 - 4000
  • [4] Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions
    Bailung, H.
    Sharma, S. K.
    Nakamura, Y.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (25)
  • [5] Sasa-Satsuma equation: Soliton on a background and its limiting cases
    Bandelow, U.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW E, 2012, 86 (02):
  • [6] Solutions of the Vector Nonlinear Schrodinger Equations: Evidence for Deterministic Rogue Waves
    Baronio, Fabio
    Degasperis, Antonio
    Conforti, Matteo
    Wabnitz, Stefan
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (04)
  • [7] BENNEY DJ, 1977, STUD APPL MATH, V56, P81
  • [8] Matter rogue waves
    Bludov, Yu. V.
    Konotop, V. V.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW A, 2009, 80 (03):
  • [9] Super Rogue Waves: Observation of a Higher-Order Breather in Water Waves
    Chabchoub, A.
    Hoffmann, N.
    Onorato, M.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW X, 2012, 2 (01):
  • [10] Rogue Wave Observation in a Water Wave Tank
    Chabchoub, A.
    Hoffmann, N. P.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (20)