Valley caloritronics and its realization by graphene nanoribbons

被引:50
作者
Chen, Xiaobin [1 ]
Zhang, Lei [1 ,2 ]
Guo, Hong [1 ]
机构
[1] McGill Univ, Dept Phys, Ctr Phys Mat, Montreal, PQ H3A 2T8, Canada
[2] Shanxi Univ, Inst Laser Spect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
POLARIZATION; GENERATION;
D O I
10.1103/PhysRevB.92.155427
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose and theoretically investigate an idea of valley caloritronics where quantum transport of the valley degrees of freedom is thermally induced. Valley caloritronics addresses questions such as thermal generation of valley polarized current and, more importantly, pure valley current without an accompanying charge current. After establishing a general physical picture, we show that heat-induced pure valley current can be generated by virtue of wedge-shaped graphene nanoribbons in a two-probe device setup. We discover that the quantum transport properties of the valley degree of freedom can be very different when driven by a voltage bias or by a temperature bias. A very surprising result is that an alternating valley current can be thermally generated via gate control: namely the heat-induced valley current changes its flow direction in some quasiperiodic manner versus the value of a gate voltage at a fixed polarity. Our results indicate a vast potential for developing valley caloritronic devices.
引用
收藏
页数:7
相关论文
共 46 条
[1]   Theory of the valley-valve effect in graphene nanoribbons [J].
Akhmerov, A. R. ;
Bardarson, J. H. ;
Rycerz, A. ;
Beenakker, C. W. J. .
PHYSICAL REVIEW B, 2008, 77 (20)
[2]  
Bauer GEW, 2012, NAT MATER, V11, P391, DOI [10.1038/nmat3301, 10.1038/NMAT3301]
[3]   Valley-selective circular dichroism of monolayer molybdenum disulphide [J].
Cao, Ting ;
Wang, Gang ;
Han, Wenpeng ;
Ye, Huiqi ;
Zhu, Chuanrui ;
Shi, Junren ;
Niu, Qian ;
Tan, Pingheng ;
Wang, Enge ;
Liu, Baoli ;
Feng, Ji .
NATURE COMMUNICATIONS, 2012, 3
[4]   Giant room-temperature spin caloritronics in spin-semiconducting graphene nanoribbons [J].
Chen, Xiaobin ;
Liu, Yizhou ;
Gu, Bing-Lin ;
Duan, Wenhui ;
Liu, Feng .
PHYSICAL REVIEW B, 2014, 90 (12)
[5]   Photon-assisted thermoelectric properties of noncollinear spin valves [J].
Chen, Xiaobin ;
Liu, Dongping ;
Duan, Wenhui ;
Guo, Hong .
PHYSICAL REVIEW B, 2013, 87 (08)
[6]   OBSERVATION OF ANDERSON LOCALIZATION IN AN ELECTRON GAS [J].
CUTLER, M ;
MOTT, NF .
PHYSICAL REVIEW, 1969, 181 (03) :1336-&
[7]   Detecting topological currents in graphene superlattices [J].
Gorbachev, R. V. ;
Song, J. C. W. ;
Yu, G. L. ;
Kretinin, A. V. ;
Withers, F. ;
Cao, Y. ;
Mishchenko, A. ;
Grigorieva, I. V. ;
Novoselov, K. S. ;
Levitov, L. S. ;
Geim, A. K. .
SCIENCE, 2014, 346 (6208) :448-451
[8]   Valley susceptibility of an interacting two-dimensional electron system [J].
Gunawan, O. ;
Shkolnikov, Y. P. ;
Vakili, K. ;
Gokmen, T. ;
De Poortere, E. P. ;
Shayegan, M. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[9]   Graphene Valley Filter Using a Line Defect [J].
Gunlycke, D. ;
White, C. T. .
PHYSICAL REVIEW LETTERS, 2011, 106 (13)
[10]   Graphene nanostrip digital memory device [J].
Gunlycke, Daniel ;
Areshkin, Denis A. ;
Li, Junwen ;
Mintmire, John W. ;
White, Carter T. .
NANO LETTERS, 2007, 7 (12) :3608-3611