Unified fractional Fourier transform and sampling theorem

被引:135
作者
Erseghe, T [2 ]
Kraniauskas, P
Cariolaro, G
机构
[1] Snell & Wilcox Ltd, Petersfield, Hants, England
[2] Univ Padua, Dept Elect & Informat, Padua, Italy
关键词
discrete fractional Fourier transform; Fourier transform; fractional Fourier transform; sampling theorem;
D O I
10.1109/78.806089
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The fractional Fourier transform (FRT) is an extension of the ordinary Fourier transform (FT). Applying the language of the unified ET, we develop FRT expressions for discrete and continuous signals, introducing a particular form of periodicity: chirp-periodicity. The FRT sampling theorem is derived as an extension of its ordinary counterpart.
引用
收藏
页码:3419 / 3423
页数:5
相关论文
共 12 条
[1]   Fractional Fourier and Radon-Wigner transforms of periodic signals [J].
Alieva, T ;
Barbe, A .
SIGNAL PROCESSING, 1998, 69 (02) :183-189
[2]   Product and convolution theorems for the fractional Fourier transform [J].
Almeida, LB .
IEEE SIGNAL PROCESSING LETTERS, 1997, 4 (01) :15-17
[3]   A unified framework for the fractional Fourier transform [J].
Cariolaro, G ;
Erseghe, T ;
Kraniauskas, P ;
Laurenti, N .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (12) :3206-3219
[4]  
CARIOLARO G, 1996, TEORIA UNIFICATA SEG
[5]  
CARIOLARO G, IN PRESS IEEE T SIGN
[6]   Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm [J].
Garcia, J ;
Mas, D ;
Dorsch, RG .
APPLIED OPTICS, 1996, 35 (35) :7013-7018
[7]   Method for defining a class of fractional operations [J].
Kraniauskas, P ;
Cariolaro, G ;
Erseghe, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (10) :2804-2807
[8]   CONVOLUTION, FILTERING, AND MULTIPLEXING IN FRACTIONAL FOURIER DOMAINS AND THEIR RELATION TO CHIRP AND WAVELET TRANSFORMS [J].
OZAKTAS, HM ;
BARSHAN, B ;
MENDLOVIC, D ;
ONURAL, L .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (02) :547-559
[9]   Digital computation of the fractional Fourier transform [J].
Ozaktas, HM ;
Ankan, O ;
Kutay, MA ;
Bozdagi, G .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (09) :2141-2150
[10]   On bandlimited signals with fractional Fourier transform [J].
Xia, XG .
IEEE SIGNAL PROCESSING LETTERS, 1996, 3 (03) :72-74