Linear and sublinear operators on generalized Morrey spaces with non-doubling measures

被引:16
作者
Guliyev, Vagif [1 ,2 ]
Sawano, Yoshihiro [3 ]
机构
[1] Ahi Evran Univ, Dept Math, Kirsehir, Turkey
[2] Inst Math & Mech NAS Azerbaijan, Baku 370000, Azerbaijan
[3] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 6068502, Japan
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2013年 / 83卷 / 03期
基金
日本学术振兴会;
关键词
Morrey spaces; generalized Morrey spaces; maximal operator; singular integral operators; fractional integral operator; commutators; FRACTIONAL INTEGRAL-OPERATORS; CALDERON-ZYGMUND OPERATORS; MAXIMAL OPERATOR; MULTILINEAR COMMUTATORS; RIESZ-POTENTIALS; HERZ SPACES; BOUNDEDNESS; INEQUALITIES;
D O I
10.5486/PMD.2013.5508
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using a geometric structure of the Euclidean space, the theory of generalized Morrey spaces is shown to be available in the non-doubling setting. Some classical operators are established to be bounded in the generalized spaces defined in the present paper.
引用
收藏
页码:303 / 327
页数:25
相关论文
共 45 条
  • [1] ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
  • [2] Burenkov VI, 2007, CONTEMP MATH, V424, P17
  • [3] Boundedness of the fractional maximal operator in local Morrey-type spaces
    Burenkov, V. I.
    Gogatishvili, A.
    Guliyev, V. S.
    Mustafayev, R. Ch.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (8-10) : 739 - 758
  • [4] Boundedness of the Riesz Potential in Local Morrey-Type Spaces
    Burenkov, Victor I.
    Gogatishvili, Amiran
    Guliyev, Vagif S.
    Mustafayev, Rza Ch
    [J]. POTENTIAL ANALYSIS, 2011, 35 (01) : 67 - 87
  • [5] Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type Spaces
    Burenkov, Victor I.
    Guliyev, Vagif S.
    [J]. POTENTIAL ANALYSIS, 2009, 30 (03) : 211 - 249
  • [6] Eridani A., 2004, SCI MATH JPN, V60, P539
  • [7] Boundedness properties of fractional integral operators associated to non-doubling measures
    García-Cuerva, J
    Gatto, AE
    [J]. STUDIA MATHEMATICA, 2004, 162 (03) : 245 - 261
  • [8] Guliyev V., 2009, J. Inequal. Appl, DOI DOI 10.1155/2009/503948
  • [9] Guliyev V. S., 2012, Transactions of Azerbaijan National Academy of Sciences, P61
  • [10] Guliyev V. S., 1999, Function spaces, Integral Operators and Two Weighted Inequalities on Homogeneous Groups