Linear and sublinear operators on generalized Morrey spaces with non-doubling measures

被引:16
作者
Guliyev, Vagif [1 ,2 ]
Sawano, Yoshihiro [3 ]
机构
[1] Ahi Evran Univ, Dept Math, Kirsehir, Turkey
[2] Inst Math & Mech NAS Azerbaijan, Baku 370000, Azerbaijan
[3] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 6068502, Japan
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2013年 / 83卷 / 03期
基金
日本学术振兴会;
关键词
Morrey spaces; generalized Morrey spaces; maximal operator; singular integral operators; fractional integral operator; commutators; FRACTIONAL INTEGRAL-OPERATORS; CALDERON-ZYGMUND OPERATORS; MAXIMAL OPERATOR; MULTILINEAR COMMUTATORS; RIESZ-POTENTIALS; HERZ SPACES; BOUNDEDNESS; INEQUALITIES;
D O I
10.5486/PMD.2013.5508
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using a geometric structure of the Euclidean space, the theory of generalized Morrey spaces is shown to be available in the non-doubling setting. Some classical operators are established to be bounded in the generalized spaces defined in the present paper.
引用
收藏
页码:303 / 327
页数:25
相关论文
共 45 条
[1]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[2]  
Burenkov VI, 2007, CONTEMP MATH, V424, P17
[3]   Boundedness of the fractional maximal operator in local Morrey-type spaces [J].
Burenkov, V. I. ;
Gogatishvili, A. ;
Guliyev, V. S. ;
Mustafayev, R. Ch. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (8-10) :739-758
[4]   Boundedness of the Riesz Potential in Local Morrey-Type Spaces [J].
Burenkov, Victor I. ;
Gogatishvili, Amiran ;
Guliyev, Vagif S. ;
Mustafayev, Rza Ch .
POTENTIAL ANALYSIS, 2011, 35 (01) :67-87
[5]   Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type Spaces [J].
Burenkov, Victor I. ;
Guliyev, Vagif S. .
POTENTIAL ANALYSIS, 2009, 30 (03) :211-249
[6]  
Eridani A., 2004, SCI MATH JPN, V60, P539
[7]   Boundedness properties of fractional integral operators associated to non-doubling measures [J].
García-Cuerva, J ;
Gatto, AE .
STUDIA MATHEMATICA, 2004, 162 (03) :245-261
[8]  
Guliyev V., 2009, J. Inequal. Appl, DOI DOI 10.1155/2009/503948
[9]  
Guliyev V. S., 2012, Transactions of Azerbaijan National Academy of Sciences, P61
[10]  
Guliyev V. S., 1999, Function spaces, Integral Operators and Two Weighted Inequalities on Homogeneous Groups