A class of relations among multiple zeta values

被引:33
作者
Kawashima, Gaku [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
Multiple zeta value; Newton series; Ohno's relation; HARMONIC SERIES; DUALITY; ALGEBRA; SUM;
D O I
10.1016/j.jnt.2008.11.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a new class of relations among multiple zeta values (MZV's) which contains Ohno's relation. We also give the formula for the maximal number of independent MZV's of fixed weight, under our new relations. To derive our formula for MZV's, we consider the Newton series whose values at non-negative integers are finite multiple harmonic sums. (C) 2009 Published by Elsevier Inc.
引用
收藏
页码:755 / 788
页数:34
相关论文
共 19 条
[1]  
[Anonymous], 1775, Novi Comm. Acad. Sci. Petropol.
[2]  
Blumlein J., 1999, Phys. Rev. D, V60, DOI DOI 10.1103/PHYSREVD.60.014018
[3]  
Gelfond A. O., 1971, International Monographs on Advanced Mathematics and Physics
[4]  
HOFFMAN M, ARXIVMATHNT0401319
[5]   The algebra of multiple harmonic series [J].
Hoffman, ME .
JOURNAL OF ALGEBRA, 1997, 194 (02) :477-495
[6]   Relations of multiple zeta values and their algebraic expression [J].
Hoffman, ME ;
Ohno, Y .
JOURNAL OF ALGEBRA, 2003, 262 (02) :332-347
[7]   MULTIPLE HARMONIC SERIES [J].
HOFFMAN, ME .
PACIFIC JOURNAL OF MATHEMATICS, 1992, 152 (02) :275-290
[8]   Derivation and double shuffle relations for multiple zeta values [J].
Ihara, K ;
Kaneko, M ;
Zagier, D .
COMPOSITIO MATHEMATICA, 2006, 142 (02) :307-338
[9]  
IZUMI S, 1934, TEISAHO IWANAMI
[10]  
Kaneko M, 2007, CONFERENCE ON L-FUNCTIONS, P89