Factors affecting the hydrothermal corrosion behavior of chemically vapor deposited silicon carbides

被引:21
作者
Shin, Jung Ho [1 ]
Kim, Daejong [1 ]
Lee, Hyeon-Geun [1 ]
Park, Ji Yeon [1 ]
Kim, Weon-Ju [1 ]
机构
[1] Korea Atom Energy Res Inst, Nucl Mat Dev Div, 989-111 Daedeok Daero, Daejeon 305353, South Korea
基金
新加坡国家研究基金会;
关键词
WATER; OXIDATION; CERAMICS; RESISTANCE;
D O I
10.1016/j.jnucmat.2019.03.026
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The hydrothermal corrosion behavior of chemical-vapor-deposited SiC was investigated for application as nuclear fuel cladding in a pressurized water reactor (PWR). This paper presented the effect of grain size, stacking fault, electrical conductivity, and electrochemical properties on the hydrothermal corrosion behavior of the CVD SiC in a simulated PWR water loop at 360 degrees C and 18.5 MPa. The hydrothermal corrosion of SiC was strongly influenced by electrical conductivity. It was revealed that high electrical conductivity leads to high exchange current density, which allows SiO2/Si(OH)(4) to form easily on the SiC surface, allowing it to dissolve rapidly in the hydrothermal environment. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:350 / 356
页数:7
相关论文
共 33 条
[1]   Corrosion of CVD silicon carbide in 500°C supercritical water [J].
Barringer, E. ;
Faiztompkins, Z. ;
Feinroth, H. ;
Allen, T. ;
Lance, M. ;
Meyer, H. ;
Walker, L. ;
Lara-Curzio, E. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (01) :315-318
[2]   Reaction pathways for quartz dissolution determined by statistical and graphical analysis of macroscopic experimental data [J].
Bickmore, Barry R. ;
Wheeler, Justin C. ;
Bates, Brittney ;
Nagy, Kathryn L. ;
Eggett, Dennis L. .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2008, 72 (18) :4521-4536
[3]   Computational estimate of the corrosion resistance of fuel microelements with silicon carbide cladding in a water medium at supercritical pressure [J].
Filippov, G. A. ;
Grishanin, E. I. ;
Lebedev, Yu. E. ;
Trubachev, V. M. ;
Fal'kovskii, L. N. ;
Fonarev, B. I. .
ATOMIC ENERGY, 2007, 102 (03) :204-210
[4]  
Goela J. S., 1998, CVD GROWTH CHARACTER, P1
[5]   Pitting corrosion in CVD SiC at 300 °C in deoxygenated high-purity water [J].
Henager, Charles H., Jr. ;
Schemer-Kohrn, Alan L. ;
Pitman, Stan G. ;
Senor, David J. ;
Geelhood, Kenneth J. ;
Painter, Chad L. .
JOURNAL OF NUCLEAR MATERIALS, 2008, 378 (01) :9-16
[6]   Electrochemical corrosion of silicon carbide ceramics in sodium hydroxide [J].
Herrmann, M. ;
Sempf, K. ;
Wendrock, H. ;
Schneider, M. ;
Kremmer, K. ;
Michaelis, A. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2014, 34 (07) :1687-1693
[7]   CORROSION BEHAVIOR OF SILICON-CARBIDE IN 290-DEGREES-C WATER [J].
HIRAYAMA, H ;
KAWAKUBO, T ;
GOTO, A ;
KANEKO, T .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1989, 72 (11) :2049-2053
[8]  
Iler R. K., 1979, CHEM SILICA, P137
[9]   THERMODYNAMIC AND EXPERIMENTAL-STUDY OF CARBON FORMATION ON CARBIDES UNDER HYDROTHERMAL CONDITIONS [J].
JACOBSON, NS ;
GOTOTSI, YG ;
YOSHIMURA, M .
JOURNAL OF MATERIALS CHEMISTRY, 1995, 5 (04) :595-601
[10]   Stability of SiC and its composites at high neutron fluence [J].
Katoh, Yutai ;
Nozawa, Takashi ;
Snead, Lance L. ;
Ozawa, Kazumi ;
Tanigawa, Hiroyasu .
JOURNAL OF NUCLEAR MATERIALS, 2011, 417 (1-3) :400-405