Constrained quantum motion in δ-potential and application of a generalized integral operator

被引:10
|
作者
Sandev, Trifce [1 ,2 ,3 ]
Petreska, Irina [2 ]
Lenzi, Ervin K. [4 ]
机构
[1] Radiat Safety Directorate, Partizanski Odredi 143,POB 22, Skopje 1020, North Macedonia
[2] Ss Cyril & Methodius Univ, Fac Nat Sci & Math, Inst Phys, Arhimedova 3, Skopje 1000, North Macedonia
[3] Macedonian Acad Sci & Arts, Res Ctr Comp Sci & Informat Technol, Bul Krste Misirkov 2, Skopje 1000, North Macedonia
[4] Univ Estadual Ponta Grossa, Dept Fis, Av Carlos Cavalcanti 4748, BR-84030900 Ponta Grossa, PR, Brazil
关键词
Schrodinger equation; Fractional calculus; Fox H-function; Mittag-Leffler function; ANOMALOUS DIFFUSION; FRACTIONAL CALCULUS; MODELS; DYNAMICS;
D O I
10.1016/j.camwa.2018.11.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A quantum motion of a particle along the x-direction constrained at y = 0 in presence of the Dirac delta-potential is considered. The Green's function approach is applied for solving the corresponding two-dimensional Schrodinger equation. The exact results for the Green's function are presented in terms of the Fox H-function, and a generalized integral operator which contains the Mittag-Leffler function in the kernel. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1695 / 1704
页数:10
相关论文
共 50 条
  • [1] Generalized fractional integral operator in a complex domain
    Ali, Dalia S.
    Ibrahim, Rabha W.
    Baleanu, Dumitru
    Al-Saidi, Nadia M. G.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2024, 69 (02): : 283 - 297
  • [2] On a New Generalized Integral Operator and Certain Operating Properties
    Guzman, Paulo M.
    Lugo, Luciano M.
    Napoles Valdes, Juan E.
    Vivas-Cortez, Miguel
    AXIOMS, 2020, 9 (02) : 1 - 14
  • [3] On Opial-type inequality for a generalized fractional integral operator
    Vivas-Cortez, Miguel
    Martinez, Francisco
    Napoles Valdes, Juan E.
    Hernandez, Jorge E.
    DEMONSTRATIO MATHEMATICA, 2022, 55 (01) : 695 - 709
  • [4] Generalized Quantum Integro-Differential Fractional Operator with Application of 2D-Shallow Water Equation in a Complex Domain
    Ibrahim, Rabha W.
    Baleanu, Dumitru
    AXIOMS, 2021, 10 (04)
  • [5] Nonlinearity and constrained quantum motion
    Brody, Dorje C.
    Gustavsson, Anna C. T.
    Hughston, Lane P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (08)
  • [6] Generalized Mittag-Leffler-confluent hypergeometric functions in fractional calculus integral operator with numerical solutions
    Ghanim, Firas
    Khan, Fareeha Sami
    Ali, Ali Hasan
    Atangana, Abdon
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)
  • [7] Regular Classes Involving a Generalized Shift Plus Fractional Hornich Integral Operator
    Ibrahim, Rabha W.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2020, 38 (02): : 89 - 99
  • [8] On generalized fractional integral operator associated with generalized Bessel-Maitland function
    Ali, Rana Safdar
    Batool, Saba
    Mubeen, Shahid
    Ali, Asad
    Rahman, Gauhar
    Samraiz, Muhammad
    Nisar, Kottakkaran Sooppy
    Mohamed, Roshan Noor
    AIMS MATHEMATICS, 2021, 7 (02): : 3027 - 3046
  • [9] Generalized Briot–Bouquet differential equation by a quantum difference operator in a complex domain
    Ibrahim R.W.
    Hadid S.B.
    Momani S.
    International Journal of Dynamics and Control, 2020, 8 (03) : 762 - 771
  • [10] Fractional Minkowski-Type Integral Inequalities via the Unified Generalized Fractional Integral Operator
    Gao, Tingmei
    Farid, Ghulam
    Ahmad, Ayyaz
    Luangboon, Waewta
    Nonlaopon, Kamsing
    JOURNAL OF FUNCTION SPACES, 2022, 2022