A Deep Learning Approach to Spatiotemporal Sea Surface Height Interpolation and Estimation of Deep Currents in Geostrophic Ocean Turbulence

被引:48
作者
Manucharyan, Georgy E. [1 ]
Siegelman, Lia [2 ]
Klein, Patrice [2 ,3 ,4 ]
机构
[1] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA USA
[3] Ecole Normale Super, CNRS, Lab Meteorol Dynam, Paris, France
[4] CNRS, IFREMER, Lab Oceanog Phys & Spatiale, Brest, France
关键词
baroclinic instability; Deep Learning; deep ocean flows; mesoscale eddies; sea surface height interpolation; state estimation; KINETIC-ENERGY; ALTIMETER; CIRCULATION; DYNAMICS; FLUXES; MODEL;
D O I
10.1029/2019MS001965
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Satellite altimeters provide global observations of sea surface height (SSH) and present a unique data set for advancing our theoretical understanding of upper-ocean dynamics and monitoring its variability. Considering that mesoscale SSH patterns can evolve on timescales comparable to or shorter than satellite return periods, it is challenging to accurately reconstruct the continuous SSH evolution as currently available altimetry observations are still spatially and temporally sparse. Here we explore the possibility of SSH interpolation via Deep Learning by using synthetic observations from an idealized quasigeostrophic model of baroclinic ocean turbulence. We demonstrate that Convolutional Neural Networks with Residual Learning are superior in SSH reconstruction to linear and recently developed dynamical interpolation techniques. Also, the deep neural networks can provide a skillful state estimate of unobserved deep ocean currents at mesoscales. These conspicuous results suggest that SSH patterns of eddies might contain substantial information about the underlying deep ocean currents that are necessary for SSH prediction. Our training data are focused on highly idealized physics and diversification of processes needs to be considered to more accurately represent the real ocean. In addition, methodological improvements such as transfer learning and implementation of dynamically aware loss functions might be necessary to consider before its ultimate use with real satellite observations. Nonetheless, by providing a proof of concept based on synthetic data, our results point to deep learning as a viable alternative to existing interpolation and, more generally, state estimation methods for satellite observations of eddying currents. Plain Language Summary Satellite observations of sea surface height (SSH) are widely used to derive surface ocean currents on a global scale. However, due to gaps in SSH observations, it remains challenging to retrieve the dynamics of rapidly evolving upper-ocean currents. To overcome this limitation, we propose a Deep Learning framework that is based on pattern recognition extracted from SSH observations. Using synthetic data generated from a simplified model of ocean turbulence, we demonstrate that deep learning can accurately estimate both surface and subsurface ocean currents, significantly outperforming the most commonly used techniques. By providing a proof of concept, our study highlights the strong potential of deep learning for estimating ocean currents from satellite observations.
引用
收藏
页数:17
相关论文
共 51 条
[1]   Global surface eddy diffusivities derived from satellite altimetry [J].
Abernathey, R. P. ;
Marshall, J. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (02) :901-916
[2]   Mapping the Energy Cascade in the North Atlantic Ocean: The Coarse-Graining Approach [J].
Aluie, Hussein ;
Hecht, Matthew ;
Vallis, Geoffrey K. .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2018, 48 (02) :225-244
[3]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZENODO.3757524
[4]   Nonlinear Cascades of Surface Oceanic Geostrophic Kinetic Energy in the Frequency Domain [J].
Arbic, Brian K. ;
Scott, Robert B. ;
Flierl, Glenn R. ;
Morten, Andrew J. ;
Richman, James G. ;
Shriver, Jay F. .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2012, 42 (09) :1577-1600
[5]   On the resolutions of ocean altimetry maps [J].
Ballarotta, Maxime ;
Ubelmann, Clement ;
Pujol, Marie-Isabelle ;
Taburet, Guillaume ;
Fournier, Florent ;
Legeais, Jean-Francois ;
Faugere, Yannice ;
Delepoulle, Antoine ;
Chelton, Dudley ;
Dibarboure, Gerald ;
Picot, Nicolas .
OCEAN SCIENCE, 2019, 15 (04) :1091-1109
[6]   The dynamics of an equivalent-barotropic model of the wind-driven circulation [J].
Berloff, PS ;
Meacham, SP .
JOURNAL OF MARINE RESEARCH, 1997, 55 (03) :407-451
[7]   Applications of Deep Learning to Ocean Data Inference and Subgrid Parameterization [J].
Bolton, Thomas ;
Zanna, Laure .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (01) :376-399
[8]   A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA) [J].
Carton, James A. ;
Giese, Benjamin S. .
MONTHLY WEATHER REVIEW, 2008, 136 (08) :2999-3017
[9]   Reconstruction of Subsurface Velocities From Satellite Observations Using Iterative Self-Organizing Maps [J].
Chapman, Christopher ;
Charantonis, Anastase Alexandre .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) :617-620
[10]  
CHARNEY JG, 1971, J ATMOS SCI, V28, P1087, DOI 10.1175/1520-0469(1971)028<1087:GT>2.0.CO