On Hahn-Banach type theorems for hilbert C*-modules

被引:7
作者
Frank, M [1 ]
机构
[1] Univ Leipzig, Inst Math, D-04109 Leipzig, Germany
关键词
Hilbert C*-module; bounded module map; Hahn-Banach theorem; completely bounded module map; operator spaces; operator modules;
D O I
10.1142/S0129167X02001356
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish three Hahn-Banach type extension criteria for (sets of) bounded C*-linear maps of Hilbert C*-modules to the underlying C*-algebras of coefficients. One criterion gives an alternative description of the property of C*-algebras to be monotone complete or additively complete.
引用
收藏
页码:675 / 693
页数:19
相关论文
共 34 条
[1]  
BAILLET M, 1988, COMPOS MATH, V66, P199
[2]   A generalization of Hilbert modules [J].
Blecher, DP .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 136 (02) :365-421
[3]  
Floyd EE., 1955, Pac. J. Math, V5, P687, DOI [10.2140/pjm.1955.5.687, DOI 10.2140/PJM.1955.5.687]
[4]   Isomorphisms of Hilbert C*-modules and *-isomorphisms of related operator C*-algebras [J].
Frank, M .
MATHEMATICA SCANDINAVICA, 1997, 80 (02) :313-319
[5]   HILBERT C-ASTERISK-MODULES OVER MONOTONE COMPLETE C-ASTERISK-ALGEBRAS [J].
FRANK, M .
MATHEMATISCHE NACHRICHTEN, 1995, 175 :61-83
[6]   Geometrical aspects of Hilbert C*-modules [J].
Frank, M .
POSITIVITY, 1999, 3 (03) :215-243
[7]  
FRANK M, 2002, IN PRESS PACIFIC J M
[8]  
Frank M., 1990, Z. Anal. Anwend, V9, P165, DOI [10.4171/zaa/390, DOI 10.4171/ZAA/390]
[9]  
FRANK M, 2002, UNPUB HAHNBANACH THE
[10]  
Frank M., 1997, Z. Anal. Anwend, V16, P565, DOI [10.4171/zaa/778, DOI 10.4171/ZAA/778]