Surrogate network-based sparseness hyper-parameter optimization for deep expression recognition

被引:19
作者
Xie, Weicheng [1 ,2 ,3 ]
Chen, Wenting [1 ,2 ,3 ]
Shen, Linlin [1 ,2 ,3 ]
Duan, Jinming [4 ]
Yang, Meng [5 ]
机构
[1] Shenzhen Univ, Sch Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen, Peoples R China
[3] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen, Peoples R China
[4] Univ Birmingham, Sch Comp Sci, Birmingham, W Midlands, England
[5] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China
关键词
Expression recognition; Deep sparseness strategies; Hyper-parameter optimization; Surrogate network; Heuristic optimizer;
D O I
10.1016/j.patcog.2020.107701
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For facial expression recognition, the sparseness constraints of the features or weights can improve the generalization ability of a deep network. However, the optimization of the hyper-parameters in fusing different sparseness strategies demands much computation, when the traditional gradient-based algorithms are used. In this work, an iterative framework with surrogate network is proposed for the optimization of hyper-parameters in fusing different sparseness strategies. In each iteration, a network with significantly smaller model complexity is fitted to the original large network based on four Euclidean losses, where the hyper-parameters are optimized with heuristic optimizers. Since the surrogate network uses the same deep metrics and embeds the same hyper-parameters as the original network, the optimized hyper-parameters are then used for the training of the original deep network in the next iteration. While the performance of the proposed algorithm is justified with a tiny model, i.e. LeNet on the FER2013 database, our approach achieved competitive performances on six publicly available expression datasets, i.e., FER2013, CK+, Oulu-CASIA, MMI, AFEW and AffectNet. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 42 条
[1]  
Alam M.N., 2019, IEEE Trans. Ind. Informatics, V15, P2019, DOI DOI 10.1109/TII.2018.2834474
[2]  
Dhall A, 2011, 2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCV WORKSHOPS)
[3]   FaceNet2ExpNet: Regularizing a Deep Face Recognition Net for Expression Recognition [J].
Ding, Hui ;
Zhou, Shaohua Kevin ;
Chellappa, Rama .
2017 12TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2017), 2017, :118-126
[4]   Audio and Face Video Emotion Recognition in the Wild using Deep Neural Networks and Small Datasets [J].
Ding, Wan ;
Xu, Mingyu ;
Huang, Dongyan ;
Lin, Weisi ;
Dong, Minghui ;
Yu, Xinguo ;
Li, Haizhou .
ICMI'16: PROCEEDINGS OF THE 18TH ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2016, :506-513
[5]  
Ekman P., 1978, Facial action coding system: A technique for the measurement of facial movement
[6]  
Eriksson D., 2019, ARXIV190800420
[7]  
Fan B, 2018, INT SYM MED INFORM, P227
[8]   Video-Based Emotion Recognition using CNN-RNN and C3D Hybrid Networks [J].
Fan, Yin ;
Lu, Xiangju ;
Li, Dian ;
Liu, Yuanliu .
ICMI'16: PROCEEDINGS OF THE 18TH ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2016, :445-450
[9]   Challenges in representation learning: A report on three machine learning contests [J].
Goodfellow, Ian J. ;
Erhan, Dumitru ;
Carrier, Pierre Luc ;
Courville, Aaron ;
Mirza, Mehdi ;
Hamner, Ben ;
Cukierski, Will ;
Tang, Yichuan ;
Thaler, David ;
Lee, Dong-Hyun ;
Zhou, Yingbo ;
Ramaiah, Chetan ;
Feng, Fangxiang ;
Li, Ruifan ;
Wang, Xiaojie ;
Athanasakis, Dimitris ;
Shawe-Taylor, John ;
Milakov, Maxim ;
Park, John ;
Ionescu, Radu ;
Popescu, Marius ;
Grozea, Cristian ;
Bergstra, James ;
Xie, Jingjing ;
Romaszko, Lukasz ;
Xu, Bing ;
Chuang, Zhang ;
Bengio, Yoshua .
NEURAL NETWORKS, 2015, 64 :59-63
[10]   Facial expression recognition using radial encoding of local Gabor features and classifier synthesis [J].
Gu, Wenfei ;
Xiang, Cheng ;
Venkatesh, Y. V. ;
Huang, Dong ;
Lin, Hai .
PATTERN RECOGNITION, 2012, 45 (01) :80-91