Evolution of microstructure and microsegregation in Ni-Mn-Ga alloys directionally solidified under axial magnetic field

被引:20
作者
Hou, Long [1 ]
Dai, Yanchao [1 ]
Fautrelle, Yves [2 ]
Li, Zongbin [3 ]
Ren, Zhongming [1 ]
Esling, Claude [4 ]
Li, Xi [1 ,2 ]
机构
[1] Shanghai Univ, State Key Lab Adv Special Steels, Shanghai 200072, Peoples R China
[2] ENSHMG, EPM Madylam, BP 38402, St Martin Dheres, France
[3] Northeastern Univ, Key Lab Anisotropy & Texture Mat, Shenyang 110819, Liaoning, Peoples R China
[4] Univ Lorraine, CNRS UMR 7239, LEM3, F-57045 Metz, France
关键词
Magnetic shape memory alloys (MSMAs); Microsegregation; Magnetic field; Directional solidification; SHAPE-MEMORY ALLOYS; SINGLE-CRYSTALS; PHASE; MARTENSITE; GROWTH;
D O I
10.1016/j.jallcom.2018.05.136
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, the microstructure and microsegregation in Ni-Mn-Ga alloys directionally solidified using a seedless Bridgman technique under an axial magnetic field are investigated. The experimental results indicate that the magnetic field refines cells/dendrites and reduces microsegregation. A numerical simulation is performed to investigate convection during directional solidification under an axial magnetic field. Thermoelectric magnetic convection at the cell/dendrite scale is found to be primarily responsible for the refinement of cells/dendrites and for the inter-cellular/dendritic composition homogeneity under a magnetic field. This finding is of significance as it highlights the role of magnetic field on the microsegregation during directional solidification, which could be used in future as a tool for controlled microstructure growth. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:54 / 61
页数:8
相关论文
共 30 条
[1]   Magnetoelastic hysteresis in 5 M NiMnGa single crystals [J].
Bechtold, Christoph ;
Gerber, Andreas ;
Wuttig, Manfred ;
Quandt, Eckhard .
SCRIPTA MATERIALIA, 2008, 58 (11) :1022-1024
[2]   Thermophysical properties and thermal simulation of Bridgman crystal growth process of Ni-Mn-Ga magnetic shape memory alloys [J].
Brillo, J. ;
Behnken, H. ;
Drevermann, A. ;
Plevachuk, Y. ;
Pagounis, E. ;
Sklyarchuk, V. ;
Sturz, L. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (19-20) :4167-4174
[3]   Effect of aging on martensitic transformation, microstructures and mechanical properties in off-stoichiometric Mn-Ni-Ga alloys [J].
Cai, W. ;
Zhang, J. ;
Gao, Z. Y. ;
Sui, J. H. ;
Dong, G. F. .
ACTA MATERIALIA, 2011, 59 (06) :2358-2367
[4]   Extended investigation of intermartensitic transitions in Ni-Mn-Ga magnetic shape memory alloys: A detailed phase diagram determination [J].
Cakir, Asli ;
Righi, Lara ;
Albertini, Franca ;
Acet, Mehmet ;
Farle, Michael ;
Akturk, Selcuk .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (18)
[5]   Temperature dependence of thermoelectric power and thermal conductivity in ferromagnetic shape memory alloy Ni50Mn34In16 in magnetic fields [J].
Chandra, L. S. Sharath ;
Chattopadhyay, M. K. ;
Sharma, V. K. ;
Roy, S. B. ;
Pandey, Sudhir K. .
PHYSICAL REVIEW B, 2010, 81 (19)
[6]  
Chernenko VA, 2008, MATER SCI FORUM, V583, P1, DOI 10.4028/www.scientific.net/MSF.583.1
[7]   Compositional instability of β-phase in Ni-Mn-Ga alloys [J].
Chernenko, VA .
SCRIPTA MATERIALIA, 1999, 40 (05) :523-527
[8]   Change in microstructure during training of a Ni50Mn29Ga21 bicrystal [J].
Chulist, R. ;
Skrotzki, W. ;
Oertel, C. -G. ;
Boehm, A. ;
Poetschke, M. .
SCRIPTA MATERIALIA, 2010, 63 (05) :548-551
[9]   Effect of heat treatment on the crystal structure, martensitic transformation and magnetic properties of Mn53Ni25Ga22 ferromagnetic shape memory alloy [J].
Dong, G. F. ;
Gao, Z. Y. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 399 :185-191
[10]   Modelling the phase diagram of magnetic shape memory Heusler alloys [J].
Entel, P ;
Buchelnikov, VD ;
Khovailo, VV ;
Zayak, AT ;
Adeagbo, WA ;
Gruner, ME ;
Herper, HC ;
Wassermann, EF .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (05) :865-889