Power-aware feature selection for optimized Analog-to-Feature converter

被引:2
作者
Back, Antoine [1 ]
Chollet, Paul [1 ]
Fercoq, Olivier [1 ]
Desgreys, Patricia [1 ]
机构
[1] Inst Polytech Paris, Traitement & Commun Informat LTCI, Telecom Paris, 19 Pl Marguer Perey, F-91120 Palaiseau, France
来源
MICROELECTRONICS JOURNAL | 2022年 / 122卷
关键词
Analog-to-Feature converter; Bio-sensing acquisition; Feature selection; Low power; Non-Uniform Wavelet Sampling; FRONT-END;
D O I
10.1016/j.mejo.2022.105386
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Analog-to-feature (A2F) conversion is an acquisition method thought for IoT devices in order to increase wireless sensor's battery life. The operating principle of A2F is to perform classification tasks at sub-Nyquist rate, by extracting relevant features in the analog domain and then performing the classification step in the digital domain. We propose to use Non-Uniform Wavelet Sampling (NUWS) combined with feature selection to find and extract from the signal, a small set of relevant features for electrocardiogram (ECG) anomalies detection. A power consumption model for the A2F converter, using NUWS for features extraction, is proposed based on a CMOS 0.18 mu m mixed architecture. This model, by evaluating the energy cost of each feature, allows to perform a power-aware feature selection, selecting wavelets in order to maximize classification accuracy while minimizing the energy needed for extraction. We finally demonstrate the benefits of A2F conversion showing that the energy needed can be divided by 15 compared to a classical approach performing a uniform acquisition at Nyquist rate.
引用
收藏
页数:9
相关论文
共 20 条
[1]  
Back A, 2020, IEEE INT NEW CIRC, P186, DOI [10.1109/NEWCAS49341.2020.9159817, 10.1109/newcas49341.2020.9159817]
[2]   A 90 nm CMOS, 6 μW Power-Proportional Acoustic Sensing Frontend for Voice Activity Detection [J].
Badami, Komail M. H. ;
Lauwereins, Steven ;
Meert, Wannes ;
Verhelst, Marian .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2016, 51 (01) :291-302
[3]   A Noise-Power-Area Optimized Biosensing Front End for Wireless Body Sensor Nodes and Medical Implantable Devices [J].
Bhamra, Hansraj ;
Lynch, John ;
Ward, Matthew ;
Irazoqui, Pedro .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2017, 25 (10) :2917-2928
[4]   The restricted isometry property and its implications for compressed sensing [J].
Candes, Emmanuel J. .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) :589-592
[5]  
Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
[6]   A Probabilistic and RIPless Theory of Compressed Sensing [J].
Candes, Emmanuel J. ;
Plan, Yaniv .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (11) :7235-7254
[7]  
FERRI FJ, 1994, MACH INTELL PATT REC, V16, P403
[8]   Compressed Sensing Analog Front-End for Bio-Sensor Applications [J].
Gangopadhyay, Daibashish ;
Allstot, Emily G. ;
Dixon, Anna M. R. ;
Natarajan, Karthik ;
Gupta, Subhanshu ;
Allstot, David J. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2014, 49 (02) :426-438
[9]   A Bluetooth Low-Energy Transceiver With 3.7-mW All-Digital Transmitter, 2.75-mW High-IF Discrete-Time Receiver, and TX/RX Switchable On-Chip Matching Network [J].
Kuo, Feng-Wei ;
Ferreira, Sandro Binsfeld ;
Chen, Huan-Neng Ron ;
Cho, Lan-Chou ;
Jou, Chewn-Pu ;
Hsueh, Fu-Lung ;
Madadi, Iman ;
Tohidian, Massoud ;
Shahmohammadi, Mina ;
Babaie, Masoud ;
Staszewski, Robert Bogdan .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (04) :1144-1162
[10]   Optimal resource usage in ultra-low-power sensor interfaces through context- and resource-cost-aware machine learning [J].
Lauwereins, Steven ;
Badami, Komail ;
Meert, Wannes ;
Verhelst, Marian .
NEUROCOMPUTING, 2015, 169 :236-245