QUASI-REGULAR DIRICHLET FORMS ON FREE RIEMANNIAN PATH SPACES

被引:7
作者
Wang, Feng-Yu [1 ]
Wu, Bo
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
关键词
Quasi-regular Dirichlet form; free path space; integration by parts formula; CONSTRUCTION; DIFFUSIONS;
D O I
10.1142/S0219025709003628
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The integration by parts formula on free path spaces over noncompact Riemannian manifolds is established for initial distributions with densities in W-loc(2,1). As an application, a large class of Dirichlet forms with (unbounded and non-constant) diffusion coefficients are constructed on free Riemannian path spaces, which are quasi-regular under mild curvature conditions.
引用
收藏
页码:251 / 267
页数:17
相关论文
共 20 条
[1]  
ALBEVERIO S, 1993, CR ACAD SCI I-MATH, V316, P287
[2]  
[Anonymous], 1979, LECT NOTES MATH
[3]   MARTINGALE REPRESENTATION AND A SIMPLE PROOF OF LOGARITHMIC SOBOLEV INEQUALITIES ON PATH SPACES [J].
Capitaine, Mireille ;
Hsu, Elton P. ;
Ledoux, Michel .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 1997, 2 :71-81
[5]  
DRIVER BK, 1992, CR ACAD SCI I-MATH, V315, P603
[6]   Analysis on free Riemannian path spaces [J].
Fang, SZ ;
Wang, FY .
BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (04) :339-355
[7]   Algebraic structure on Dirichlet spaces [J].
Fang, Xing ;
He, Ping ;
Ying, Jian Gang .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (03) :723-728
[8]  
Fukushima M., 2011, De Gruyter Stud. Math., V19
[9]   Quasi-invariance of the Wiener measure on the path space over a compact Riemannian manifold [J].
Hsu, EP .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 134 (02) :417-450