Existence of positive solutions to elliptic problems involving the fractional Laplacian

被引:0
作者
Ge, Bin [1 ]
Zhang, Chao [2 ]
机构
[1] Harbin Engn Univ, Dept Appl Math, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2015年
基金
中国国家自然科学基金;
关键词
fractional-Laplacian; variational method; positive solutions; Pohozaev type identity;
D O I
10.1186/s13661-015-0501-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on the following elliptic problem involving a fractional Laplacian: (-Delta)(alpha)u + V(x)u = f(u) in R-N,R- where N >= 2, alpha is an element of(0, 1), (-Delta)(alpha) stands for the fractional Laplacian. Using some variational methods, we obtain the existence of positive solutions without compactness conditions.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 12 条
[1]   Elliptic problems involving the fractional Laplacian in RN [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) :2340-2362
[2]   Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity [J].
Chang, X. ;
Wang, Z-Q .
NONLINEARITY, 2013, 26 (02) :479-494
[3]   Ground state solutions of asymptotically linear fractional Schrodinger equations [J].
Chang, Xiaojun .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)
[4]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343
[5]   Bound state for the fractional Schrodinger equation with unbounded potential [J].
Cheng, Ming .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (04)
[6]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[7]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262
[8]   On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN [J].
Jeanjean, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :787-809
[9]   The Pohozaev Identity for the Fractional Laplacian [J].
Ros-Oton, Xavier ;
Serra, Joaquim .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 213 (02) :587-628
[10]  
Secchi S., 2012, ARXIV12100755