Narrowing Brillouin gain spectrum for distortion-free Brillouin optical time-domain analyzers

被引:2
|
作者
Sun, Xizi [1 ]
Hong, Xiaobin [1 ]
Wang, Sheng [1 ]
Wu, Jian [1 ]
Li, Yan [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
distributed fiber optic sensor; stimulated Brillouin scattering; pi-phase shifted pulse; long range; BANDWIDTH REDUCTION; FIBER SENSORS; SCATTERING; DEPLETION;
D O I
10.1117/1.OE.57.6.066104
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A high-performance Brillouin optical time-domain analysis (BOTDA) is achieved using the Brillouin gain bandwidth reduction technique combined with high injected probe power. In the probe branch, dual-tone probe wave with fixed frequency separation is used for enhancing the probe power to +5 dBm. In the pump branch, a differential pi-phase-shift long-pulse width pair is used to narrow the Brillouin gain spectrum. On the basis of high probe power and 2.5-m spatial resolution, the Brillouin gain spectrum can be narrowed to a level of 17 MHz, whereas the Brillouin gain spectrum of conventional single-pulse BOTDA sensor is 51 MHz. As a result, 50-km sensing range with 2.5-m spatial resolution and 1.1-MHz Brillouin frequency shift (BFS) accuracy has been achieved. Meanwhile, the narrowed Brillouin gain spectrum can give rise to sharp rising/falling edge in the BFS profile when the hot spots are introduced, which increases the detection robustness of the small temperature/strain change in the BOTDA system. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Brillouin optical time-domain analysis via compressed sensing
    Zhou, Da-Peng
    Peng, Wei
    Chen, Liang
    Bao, Xiaoyi
    OPTICS LETTERS, 2018, 43 (22) : 5496 - 5499
  • [42] Spontaneous Brillouin Scattering Spectrum and Coherent Brillouin Gain in Optical Fibers
    Laude, Vincent
    Beugnot, Jean-Charles
    APPLIED SCIENCES-BASEL, 2018, 8 (06):
  • [43] 1-cm-Spatial-Resolution Brillouin Optical Time-Domain Analysis Based on Bright Pulse Brillouin Gain and Complementary Code
    Mao, Y.
    Guo, N.
    Yu, K. L.
    Tam, H. Y.
    Lu, C.
    IEEE PHOTONICS JOURNAL, 2012, 4 (06): : 2243 - 2248
  • [44] ABCD matrix formalism of time-domain optical Fourier transformation for distortion-free pulse transmission
    Nakazawa, Masataka
    Hirooka, Toshihiko
    IEICE ELECTRONICS EXPRESS, 2006, 3 (04): : 74 - 79
  • [45] Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber
    Song, Kwang Yong
    Zou, Weiwen
    He, Zuyuan
    Hotate, Kazuo
    OPTICS LETTERS, 2009, 34 (09) : 1381 - 1383
  • [46] Distortion-free optical transmission using time-domain optical Fourier transformation and transform-limited optical pulses
    Nakazawa, M
    Hirooka, T
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2005, 22 (09) : 1842 - 1855
  • [47] Pulse coding linearization for Brillouin optical time-domain analysis sensors
    Marinelarena, Jon
    Iribas, Haritz
    Loayssa, Alayn
    OPTICS LETTERS, 2018, 43 (22) : 5607 - 5610
  • [48] Effect of pulse depletion in a Brillouin optical time-domain analysis system
    Thevenaz, Luc
    Mafang, Stella Foaleng
    Lin, Jie
    OPTICS EXPRESS, 2013, 21 (12): : 14017 - 14035
  • [49] Closed-loop Controlled Brillouin Optical Time-Domain Analysis
    Yang, Zhisheng
    Soto, Marcelo A.
    Thevenaz, Luc
    43RD EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC 2017), 2017,
  • [50] Fast Brillouin optical time-domain analysis using compressed sensing
    Chu, Qi
    Wang, Benzhang
    Wang, Henan
    Ba, Dexin
    Dong, Yongkang
    OPTICS FRONTIERS ONLINE 2020: DISTRIBUTED OPTICAL FIBER SENSING TECHNOLOGY AND APPLICATIONS, 2021, 11607