Robust Multiple Sclerosis Lesion Inpainting with Edge Prior

被引:8
作者
Zhang, Huahong [1 ]
Bakshi, Rohit [2 ]
Bagnato, Francesca [3 ,4 ]
Oguz, Ipek [1 ]
机构
[1] Vanderbilt Univ, Nashville, TN 37235 USA
[2] Brigham & Womens Hosp, 75 Francis St, Boston, MA 02115 USA
[3] Vanderbilt Univ, Med Ctr, Nashville, TN 37212 USA
[4] VA Med Ctr, Nashville, TN 37212 USA
来源
MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2020 | 2020年 / 12436卷
基金
美国国家卫生研究院;
关键词
Multiple sclerosis; Deep learning; Inpainting; BRAIN; REGISTRATION; MORPHOMETRY; ATROPHY; IMPACT; GRAY;
D O I
10.1007/978-3-030-59861-7_13
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Inpainting lesions is an important preprocessing task for algorithms analyzing brain MRIs of multiple sclerosis (MS) patients, such as tissue segmentation and cortical surface reconstruction. We propose a new deep learning approach for this task. Unlike existing inpainting approaches which ignore the lesion areas of the input image, we leverage the edge information around the lesions as a prior to help the inpainting process. Thus, the input of this network includes the T1-w image, lesion mask and the edge map computed from the T1-w image, and the output is the lesion-free image. The introduction of the edge prior is based on our observation that the edge detection results of the MRI scans will usually contain the contour of white matter (WM) and grey matter (GM), even though some undesired edges appear near the lesions. Instead of losing all the information around the neighborhood of lesions, our approach preserves the local tissue shape (brain/WM/GM) with the guidance of the input edges. The qualitative results show that our pipeline inpaints the lesion areas in a realistic and shape-consistent way. Our quantitative evaluation shows that our approach outperforms the existing state-of-the-art inpainting methods in both image-based metrics and in FreeSurfer segmentation accuracy. Furthermore, our approach demonstrates robustness to inaccurate lesion mask inputs. This is important for practical usability, because it allows for a generous over-segmentation of lesions instead of requiring precise boundaries, while still yielding accurate results.
引用
收藏
页码:120 / 129
页数:10
相关论文
共 50 条
  • [41] Diffusion tensor imaging of acute inflammatory lesion evolution in multiple sclerosis
    Liu, Y.
    Mitchell, P. J.
    Kilpatrick, T. J.
    Stein, M. S.
    Harrison, L. C.
    Baker, J.
    Ditchfield, M.
    Li, K.
    Egan, G. F.
    Butzkueven, H.
    Kolbe, S. C.
    JOURNAL OF CLINICAL NEUROSCIENCE, 2012, 19 (12) : 1689 - 1694
  • [42] Increased tissue damage and lesion volumes in African Americans with multiple sclerosis
    Weinstock-Guttman, B.
    Ramanathan, M.
    Hashmi, K.
    Abdelrahman, N.
    Hojnacki, D.
    Dwyer, M. G.
    Hussein, S.
    Bergsland, N.
    Munschauer, F. E.
    Zivadinov, R.
    NEUROLOGY, 2010, 74 (07) : 538 - 544
  • [43] Consensus of algorithms for lesion segmentation in brain MRI studies of multiple sclerosis
    De Rosa, Alessandro Pasquale
    Benedetto, Marco
    Tagliaferri, Stefano
    Bardozzo, Francesco
    D'Ambrosio, Alessandro
    Bisecco, Alvino
    Gallo, Antonio
    Cirillo, Mario
    Tagliaferri, Roberto
    Esposito, Fabrizio
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [44] A Light Weighted Deep Learning Framework for Multiple Sclerosis Lesion Segmentation
    Ghosal, Palash
    Prasad, Pindi Krishna Chandra
    Nandi, Debashis
    2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 526 - 531
  • [45] Herpes Labialis in Multiple Sclerosis with a Trigeminal Lesion
    Suzuki, Naoki
    Mizuno, Hideki
    Nakashima, Ichiro
    Itoyama, Yasuto
    INTERNAL MEDICINE, 2011, 50 (03) : 259 - 259
  • [46] Histopathology-validated recommendations for cortical lesion imaging in multiple sclerosis
    Bouman, Piet M.
    Steenwijk, Martijn D.
    Pouwels, Petra J. W.
    Schoonheim, Menno M.
    Barkhof, Frederik
    Jonkman, Laura E.
    Geurts, Jeroen J. G.
    BRAIN, 2020, 143 : 2988 - 2997
  • [47] Postmortem quantitative MRI disentangles histological lesion types in multiple sclerosis
    Galbusera, Riccardo
    Bahn, Erik
    Weigel, Matthias
    Schaedelin, Sabine
    Franz, Jonas
    Lu, Po-Jui
    Barakovic, Muhamed
    Melie-Garcia, Lester
    Dechent, Peter
    Lutti, Antoine
    Sati, Pascal
    Reich, Daniel S.
    Nair, Govind
    Brueck, Wolfgang
    Kappos, Ludwig
    Stadelmann, Christine
    Granziera, Cristina
    BRAIN PATHOLOGY, 2023, 33 (06)
  • [48] A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis
    Salem, Mostafa
    Valverde, Sergi
    Cabezas, Mariano
    Pareto, Deborah
    Oliver, Arnau
    Salvi, Joaquim
    Rovira, Alex
    Llado, Xavier
    NEUROIMAGE-CLINICAL, 2020, 25
  • [49] Cortical lesion hotspots and association of subpial lesions with disability in multiple sclerosis
    Beck, Erin S.
    Maranzano, Josefina
    Luciano, Nicholas J.
    Parvathaneni, Prasanna
    Filippini, Stefano
    Morrison, Mark
    Suto, Daniel J.
    Wu, Tianxia
    van Gelderen, Peter
    de Zwart, Jacco A.
    Antel, Samson
    Fetco, Dumitru
    Ohayon, Joan
    Andrada, Frances
    Mina, Yair
    Thomas, Chevaz
    Jacobson, Steve
    Duyn, Jeff
    Cortese, Irene
    Narayanan, Sridar
    Nair, Govind
    Sati, Pascal
    Reich, Daniel S.
    MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (09) : 1351 - 1363
  • [50] Paroxysmal dystonia with thalamic lesion in multiple sclerosis
    Zenzola, A
    De Mari, M
    De Blasi, R
    Carella, A
    Lamberti, P
    NEUROLOGICAL SCIENCES, 2001, 22 (05) : 391 - 394