Robust Multiple Sclerosis Lesion Inpainting with Edge Prior

被引:8
作者
Zhang, Huahong [1 ]
Bakshi, Rohit [2 ]
Bagnato, Francesca [3 ,4 ]
Oguz, Ipek [1 ]
机构
[1] Vanderbilt Univ, Nashville, TN 37235 USA
[2] Brigham & Womens Hosp, 75 Francis St, Boston, MA 02115 USA
[3] Vanderbilt Univ, Med Ctr, Nashville, TN 37212 USA
[4] VA Med Ctr, Nashville, TN 37212 USA
来源
MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2020 | 2020年 / 12436卷
基金
美国国家卫生研究院;
关键词
Multiple sclerosis; Deep learning; Inpainting; BRAIN; REGISTRATION; MORPHOMETRY; ATROPHY; IMPACT; GRAY;
D O I
10.1007/978-3-030-59861-7_13
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Inpainting lesions is an important preprocessing task for algorithms analyzing brain MRIs of multiple sclerosis (MS) patients, such as tissue segmentation and cortical surface reconstruction. We propose a new deep learning approach for this task. Unlike existing inpainting approaches which ignore the lesion areas of the input image, we leverage the edge information around the lesions as a prior to help the inpainting process. Thus, the input of this network includes the T1-w image, lesion mask and the edge map computed from the T1-w image, and the output is the lesion-free image. The introduction of the edge prior is based on our observation that the edge detection results of the MRI scans will usually contain the contour of white matter (WM) and grey matter (GM), even though some undesired edges appear near the lesions. Instead of losing all the information around the neighborhood of lesions, our approach preserves the local tissue shape (brain/WM/GM) with the guidance of the input edges. The qualitative results show that our pipeline inpaints the lesion areas in a realistic and shape-consistent way. Our quantitative evaluation shows that our approach outperforms the existing state-of-the-art inpainting methods in both image-based metrics and in FreeSurfer segmentation accuracy. Furthermore, our approach demonstrates robustness to inaccurate lesion mask inputs. This is important for practical usability, because it allows for a generous over-segmentation of lesions instead of requiring precise boundaries, while still yielding accurate results.
引用
收藏
页码:120 / 129
页数:10
相关论文
共 50 条
  • [31] Multiple Sclerosis Lesion Synthesis in MRI Using an Encoder-Decoder U-NET
    Salem, Mostafa
    Valverde, Sergi
    Cabezas, Mariano
    Pareto, Deborah
    Oliver, Arnau
    Salvi, Joaquim
    Rovira, Alex
    Llado, Xavier
    IEEE ACCESS, 2019, 7 : 25171 - 25184
  • [32] A contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple sclerosis
    Cerri, Stefano
    Puonti, Oula
    Meier, Dominik S.
    Wuerfel, Jens
    Muhlau, Mark
    Siebner, Hartwig R.
    Van Leemput, Koen
    NEUROIMAGE, 2021, 225
  • [33] Paroxysmal dystonia with thalamic lesion in multiple sclerosis
    A. Zenzola
    M. De Mari
    R. De Blasi
    A. Carella
    P. Lamberti
    Neurological Sciences, 2001, 22 : 391 - 394
  • [34] Amyloid in a multiple sclerosis lesion is clearly of Aλ type
    Schröder, R
    Nennesmo, I
    Linke, RP
    ACTA NEUROPATHOLOGICA, 2000, 100 (06) : 709 - 711
  • [35] MULTIPLE-SCLEROSIS MASQUERADING AS A MASS LESION
    GIANG, DW
    PODURI, KR
    ESKIN, TA
    KETONEN, LM
    FRIEDMAN, PA
    WANG, DD
    HERNDON, RM
    NEURORADIOLOGY, 1992, 34 (02) : 150 - 154
  • [36] MRI Interpolation for Multiple Sclerosis Lesion Quantification
    Farias, Fabian Ricardo
    Klein, Pedro Costa
    Soder, Ricardo Bernardi
    Becker, Jefferson
    Pinho, Marcio Sarroglia
    PROCEEDINGS 2016 IEEE 40TH ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE WORKSHOPS (COMPSAC), VOL 2, 2016, : 633 - 636
  • [37] Lesion pattern in patients with multiple sclerosis and depression
    Berg, D
    Supprian, T
    Thomae, J
    Warmuth-Metz, M
    Horowski, A
    Zeiler, B
    Magnus, T
    Rieckmann, P
    Becker, G
    MULTIPLE SCLEROSIS JOURNAL, 2000, 6 (03) : 156 - 162
  • [38] Atrophied Brain Lesion Volume: A New Imaging Biomarker in Multiple Sclerosis
    Dwyer, Michael G.
    Bergsland, Niels
    Ramasamy, Deepa P.
    Jakimovski, Dejan
    Weinstock-Guttman, Bianca
    Zivadinov, Robert
    JOURNAL OF NEUROIMAGING, 2018, 28 (05) : 490 - 495
  • [39] Lesion symptom map of cognitive-postural interference in multiple sclerosis
    Ruggieri, Serena
    Fanelli, Fulvia
    Castelli, Letizia
    Petsas, Nikolaos
    De Giglio, Laura
    Prosperini, Luca
    MULTIPLE SCLEROSIS JOURNAL, 2018, 24 (05) : 653 - 662
  • [40] Multiple sclerosis lesion segmentation: revisiting weighting mechanisms for federated learning
    Liu, Dongnan
    Cabezas, Mariano
    Wang, Dongang
    Tang, Zihao
    Bai, Lei
    Zhan, Geng
    Luo, Yuling
    Kyle, Kain
    Ly, Linda
    Yu, James
    Shieh, Chun-Chien
    Nguyen, Aria
    Kandasamy Karuppiah, Ettikan
    Sullivan, Ryan
    Calamante, Fernando
    Barnett, Michael
    Ouyang, Wanli
    Cai, Weidong
    Wang, Chenyu
    FRONTIERS IN NEUROSCIENCE, 2023, 17