Robust Multiple Sclerosis Lesion Inpainting with Edge Prior

被引:8
|
作者
Zhang, Huahong [1 ]
Bakshi, Rohit [2 ]
Bagnato, Francesca [3 ,4 ]
Oguz, Ipek [1 ]
机构
[1] Vanderbilt Univ, Nashville, TN 37235 USA
[2] Brigham & Womens Hosp, 75 Francis St, Boston, MA 02115 USA
[3] Vanderbilt Univ, Med Ctr, Nashville, TN 37212 USA
[4] VA Med Ctr, Nashville, TN 37212 USA
来源
MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2020 | 2020年 / 12436卷
基金
美国国家卫生研究院;
关键词
Multiple sclerosis; Deep learning; Inpainting; BRAIN; REGISTRATION; MORPHOMETRY; ATROPHY; IMPACT; GRAY;
D O I
10.1007/978-3-030-59861-7_13
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Inpainting lesions is an important preprocessing task for algorithms analyzing brain MRIs of multiple sclerosis (MS) patients, such as tissue segmentation and cortical surface reconstruction. We propose a new deep learning approach for this task. Unlike existing inpainting approaches which ignore the lesion areas of the input image, we leverage the edge information around the lesions as a prior to help the inpainting process. Thus, the input of this network includes the T1-w image, lesion mask and the edge map computed from the T1-w image, and the output is the lesion-free image. The introduction of the edge prior is based on our observation that the edge detection results of the MRI scans will usually contain the contour of white matter (WM) and grey matter (GM), even though some undesired edges appear near the lesions. Instead of losing all the information around the neighborhood of lesions, our approach preserves the local tissue shape (brain/WM/GM) with the guidance of the input edges. The qualitative results show that our pipeline inpaints the lesion areas in a realistic and shape-consistent way. Our quantitative evaluation shows that our approach outperforms the existing state-of-the-art inpainting methods in both image-based metrics and in FreeSurfer segmentation accuracy. Furthermore, our approach demonstrates robustness to inaccurate lesion mask inputs. This is important for practical usability, because it allows for a generous over-segmentation of lesions instead of requiring precise boundaries, while still yielding accurate results.
引用
收藏
页码:120 / 129
页数:10
相关论文
共 50 条
  • [21] A toolbox for multiple sclerosis lesion segmentation
    Eloy Roura
    Arnau Oliver
    Mariano Cabezas
    Sergi Valverde
    Deborah Pareto
    Joan C. Vilanova
    Lluís Ramió-Torrentà
    Àlex Rovira
    Xavier Lladó
    Neuroradiology, 2015, 57 : 1031 - 1043
  • [22] Time course of lesion-induced atrophy in multiple sclerosis
    Keith Carolus
    Tom A. Fuchs
    Niels Bergsland
    Deepa Ramasamy
    Hoan Tran
    Tomas Uher
    Dana Horakova
    Manuela Vaneckova
    Eva Havrdova
    Ralph H. B. Benedict
    Robert Zivadinov
    Michael G. Dwyer
    Journal of Neurology, 2022, 269 : 4478 - 4487
  • [23] Time course of lesion-induced atrophy in multiple sclerosis
    Carolus, Keith
    Fuchs, Tom A.
    Bergsland, Niels
    Ramasamy, Deepa
    Tran, Hoan
    Uher, Tomas
    Horakova, Dana
    Vaneckova, Manuela
    Havrdova, Eva
    Benedict, Ralph H. B.
    Zivadinov, Robert
    Dwyer, Michael G.
    JOURNAL OF NEUROLOGY, 2022, 269 (08) : 4478 - 4487
  • [24] Cortical lesion load associates with progression of disability in multiple sclerosis
    Calabrese, Massimiliano
    Poretto, Valentina
    Favaretto, Alice
    Alessio, Sara
    Bernardi, Valentina
    Romualdi, Chiara
    Rinaldi, Francesca
    Perini, Paola
    Gallo, Paolo
    BRAIN, 2012, 135 : 2952 - 2961
  • [25] Multiple Sclerosis Brain Lesion Segmentation with Different Architecture Ensembles
    Tohidi, Pouria
    Remedios, Samuel W.
    Greenman, Danielle L.
    Shao, Muhan
    Han, Shuo
    Dewey, Blake E.
    Reinhold, Jacob C.
    Chou, Yi-Yu
    Pham, Dzung L.
    Prince, Jerry L.
    Carass, Aaron
    MEDICAL IMAGING 2022: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2022, 12036
  • [26] Registration Based Data Augmentation for Multiple Sclerosis Lesion Segmentation
    Abolvardi, Ava Assadi
    Hamey, Len
    Ho-Shon, Kevin
    2019 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2019, : 408 - 412
  • [27] Cognitive functions in multiple sclerosis: impact of gray matter integrity
    Llufriu, Sara
    Martinez-Heras, Eloy
    Fortea, Juan
    Blanco, Yolanda
    Berenguer, Joan
    Gabilondo, Inigo
    Ibarretxe-Bilbao, Naroa
    Falcon, Carles
    Sepulveda, Maria
    Sola-Valls, Nuria
    Bargallo, Nuria
    Graus, Francesc
    Villoslada, Pablo
    Saiz, Albert
    MULTIPLE SCLEROSIS JOURNAL, 2014, 20 (04) : 424 - 432
  • [28] Imaging the multiple sclerosis lesion: insights into pathogenesis, progression and repair
    Wang, Chenyu Tim
    Barnett, Michael
    Barnett, Yael
    CURRENT OPINION IN NEUROLOGY, 2019, 32 (03) : 338 - 345
  • [29] Multiple sclerosis lesion activity segmentation with attention-guided two-path CNNs
    Gessert, Nils
    Krueger, Julia
    Opfer, Roland
    Ostwaldt, Ann-Christin
    Manogaran, Praveena
    Kitzler, Hagen H.
    Schippling, Sven
    Schlaefer, Alexander
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 84
  • [30] Prognostic value of white matter lesion shrinking in early multiple sclerosis: An intuitive or naive notion?
    Pongratz, Viola
    Schmidt, Paul
    Bussas, Matthias
    Grahl, Sophia
    Gaser, Christian
    Berthele, Achim
    Hoshi, Muna-Miriam
    Kirschke, Jan
    Zimmer, Claus
    Hemmer, Bernhard
    Muehlau, Mark
    BRAIN AND BEHAVIOR, 2019, 9 (12):