Bounded cohomology and the Cheeger isoperimetric constant

被引:4
|
作者
Kim, Sungwoon [1 ]
Kim, Inkang [1 ]
机构
[1] KIAS, Seoul 130722, South Korea
基金
新加坡国家研究基金会;
关键词
Bounded cohomology; Cheeger isoperimetric constant; Geometrically finite manifold; Bounded primitive; Symmetric space; HYPERBOLIC; 3-MANIFOLDS; SYMMETRIC-SPACES; MANIFOLDS; SURFACES; RIGIDITY; AREA;
D O I
10.1007/s10711-015-0064-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study equivalent conditions for the Cheeger isoperimetric constant of Riemannian manifolds to be positive. We first give a proof of Gromov's assertion for locally symmetric spaces with infinite volume, which states that the existence of a bounded primitive of the Riemannian volume form is equivalent to the positivity of the Cheeger isoperimetric constant. Furthermore, under the assumption of pinched negative sectional curvature, we obtain another equivalent condition in terms of bounded cohomology classes. This generalizes Soma's result (Duke Math J 88(2):357-370, 1997) for hyperbolic 3-manifolds to -rank one locally symmetric spaces.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [41] Cheeger isoperimetric constants of Gromov-hyperbolic spaces with quasi-poles
    Cao, JG
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (04) : 511 - 533
  • [42] Optimization of the anisotropic Cheeger constant with respect to the anisotropy
    Parini, Enea
    Saracco, Giorgio
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (03): : 1030 - 1043
  • [43] Isometric embeddings in bounded cohomology
    Bucher, M.
    Burger, M.
    Frigerio, R.
    Iozzi, A.
    Pagliantini, C.
    Pozzetti, M. B.
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2014, 6 (01) : 1 - 25
  • [44] Bounded cohomology of group constructions
    Grigorchyuk, RI
    MATHEMATICAL NOTES, 1996, 59 (3-4) : 392 - 394
  • [45] Bounded cohomology is not a profinite invariant
    Echtler, Daniel
    Kammeyer, Holger
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02): : 379 - 390
  • [46] Bounded cohomology and homotopy colimits
    Raptis, George
    QUARTERLY JOURNAL OF MATHEMATICS, 2024,
  • [47] Bounded cohomology of transformation groups
    Brandenbursky, Michael
    Marcinkowski, Michal
    MATHEMATISCHE ANNALEN, 2022, 382 (3-4) : 1181 - 1197
  • [48] Second bounded cohomology and WWPD
    Handel, Michael
    Mosher, Lee
    KYOTO JOURNAL OF MATHEMATICS, 2021, 61 (04) : 873 - 904
  • [49] Relative bounded cohomology for groupoids
    Matthias Blank
    Geometriae Dedicata, 2016, 184 : 27 - 66
  • [50] Relative bounded cohomology for groupoids
    Blank, Matthias
    GEOMETRIAE DEDICATA, 2016, 184 (01) : 27 - 66