We study equivalent conditions for the Cheeger isoperimetric constant of Riemannian manifolds to be positive. We first give a proof of Gromov's assertion for locally symmetric spaces with infinite volume, which states that the existence of a bounded primitive of the Riemannian volume form is equivalent to the positivity of the Cheeger isoperimetric constant. Furthermore, under the assumption of pinched negative sectional curvature, we obtain another equivalent condition in terms of bounded cohomology classes. This generalizes Soma's result (Duke Math J 88(2):357-370, 1997) for hyperbolic 3-manifolds to -rank one locally symmetric spaces.
机构:
Harvard Univ, Dept Math, Cambridge, MA 02138 USA
Max Planck Inst Math Sci, D-04103 Leipzig, GermanyHarvard Univ, Dept Math, Cambridge, MA 02138 USA
Bauer, Frank
Hua, Bobo
论文数: 0引用数: 0
h-index: 0
机构:
Max Planck Inst Math Sci, D-04103 Leipzig, GermanyHarvard Univ, Dept Math, Cambridge, MA 02138 USA
机构:
Sichuan Normal Univ, Sch Math Sci, Chengdu, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu, Peoples R China
Qiao, Zhi
Koolen, Jack H.
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Wen Tsun Wu Key Lab, Hefei, Peoples R China
USTC, Sch Math Sci, Hefei, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu, Peoples R China