Simulation-optimization via Kriging and bootstrapping: a survey

被引:35
|
作者
Kleijnen, Jack P. C. [1 ]
机构
[1] Tilburg Univ, NL-5000 LE Tilburg, Netherlands
关键词
simulation; optimization; stochastic process; non-linear programming; risk; EFFICIENT GLOBAL OPTIMIZATION; EXPECTED IMPROVEMENT; COMPUTER EXPERIMENTS; ROBUST OPTIMIZATION; MODELS; METAMODELS; TAGUCHI; DESIGN;
D O I
10.1057/jos.2014.4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article surveys optimization of simulated systems. The simulation may be either deterministic or random. The survey reflects the author's extensive experience with simulation-optimization through Kriging (or Gaussian process) metamodels, analysed through parametric bootstrapping for deterministic and random simulation and distribution-free bootstrapping (or resampling) for random simulation. The survey covers: (1) simulation-optimization through 'efficient global optimization' using 'expected improvement' (EI); this EI uses the Kriging predictor variance, which can be estimated through bootstrapping accounting for the estimation of the Kriging parameters; (2) optimization with constraints for multiple random simulation outputs and deterministic inputs through mathematical programming applied to Kriging metamodels validated through bootstrapping; (3) Taguchian robust optimization for uncertain environments, using mathematical programming-applied to Kriging metamodels-and bootstrapping to estimate the variability of the Kriging metamodels and the resulting robust solution; (4) bootstrapping for improving convexity or preserving monotonicity of the Kriging metamodel.
引用
收藏
页码:241 / 250
页数:10
相关论文
共 50 条