New kink multi-soliton solutions for the (3+1)-dimensional potential-Yu-Toda-Sasa-Fukuyama equation

被引:42
作者
Hu, Yangjie [1 ]
Chen, Hanlin [2 ]
Dai, Zhengde [1 ]
机构
[1] Yunnan Univ, Sch Math & Phys, Kunming 650091, Peoples R China
[2] Southwest Univ Sci & Technol, Sch Sci, Mianyang 621010, Peoples R China
关键词
YTSF equation; New kink multi-soliton solutions; Homoclinic test approach; Three-wave method; BOGOYAVLENSKII-SCHIFF; SOLITON-SOLUTIONS; WAVE SOLUTIONS; YTSF;
D O I
10.1016/j.amc.2014.02.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By means of transformation of unknown function, the non-integrable system of (3+1)dimensional potential Yu-Toda-Sasa-Fukuyama (YTSF) equation is converted into the combined equation of differently two bilinear forms. By the Darvishi's idea, some new kink multi-soliton solutions are obtained by using homoclinic test approach and three- wave method respectively. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:548 / 556
页数:9
相关论文
共 18 条
[1]  
Ablowwitz M.J., 1991, SOLITONS NONLINEAR E
[2]   Application of Exp-function method for (3+1)-dimensional nonlinear evolution equations [J].
Boz, Ahmet ;
Bekir, Ahmet .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (05) :1451-1456
[3]  
Dai ZD., 2010, Nonlinear Sci. Lett. A, V1, P77
[4]  
Dai ZD, 2007, CHINESE PHYS LETT, V24, P1429, DOI 10.1088/0256-307X/24/6/001
[5]   Applications of HTA and EHTA to YTSF Equation [J].
Dai, Zhengde ;
Liu, Jun ;
Li, Donglong .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) :360-364
[6]   A Modification of Extended Homoclinic Test Approach to Solve the (3+1)-Dimensional Potential-YTSF Equation [J].
Darvishi, M. T. ;
Najafi, Mohammad .
CHINESE PHYSICS LETTERS, 2011, 28 (04)
[7]  
Konopechenko B. G, 1993, SOLITONS MULTIDIMENS
[8]   New Exact Solutions to the (2+1)-Dimensional Ablowitz-Kaup-Newell-Segur Equation: Modification of the Extended Homoclinic Test Approach [J].
Najafi, Mohammad ;
Najafi, Maliheh ;
Darvishi, M. T. .
CHINESE PHYSICS LETTERS, 2012, 29 (04)
[9]  
Schff J., 1992, PAINLEVE TRANSENDENT
[10]  
Tajiri M., 2000, P I MATH NAS UKRAINE, V30, P220