Linear Complexity of Pseudorandom Sequences Derived from Polynomial Quotients: General Cases

被引:1
作者
Du, Xiaoni [1 ,2 ]
Zhang, Ji [1 ,2 ]
Wu, Chenhuang [3 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
[2] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
[3] Putian Univ, Key Lab Appl Math, Putian 351100, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
cryptography; pseudorandom binary sequences; polynomial quotients; finite fields; linear complexity; FERMAT QUOTIENTS; CHARACTER SUMS; VALUE SET;
D O I
10.1587/transfun.E97.A.970
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We determine the linear complexity of binary sequences derived from the polynomial quotient modulo p defined by F(u) equivalent to f(u) - f(p)(u)/p (mod p), 0 <= F(u) <= p -1, u >= 0, where f(p)(u) equivalent to f(u) (mod p), for general polynomials f(x) epsilon Z[x}. The linear complexity equals to one of the following values [p(2) - p, p(2) - p + 1, p(2) - 1, p(2) - 1, p(2)} if if 2 is a primitive root modulo p(2), depending on p equivalent to 1 or 3 modulo 4 and the number of solutions of f'(u) equivalent to 0 (mod p), where f'(x) is the derivative of f(x). Furthermore, we extend the constructions to d-ary sequences for prime d vertical bar(p - 1) and d being a primitive root modulo p(2).
引用
收藏
页码:970 / 974
页数:5
相关论文
共 22 条
[21]   Cryptographic properties of some binary generalized cyclotomic sequences with the length p2 [J].
Yan, Tongjiang ;
Huang, Bingjla ;
Xiao, Guozhen .
INFORMATION SCIENCES, 2008, 178 (04) :1078-1086
[22]  
Zhixiong Chen, 2012, Sequences and Their Applications - SETA 2012. Proceedings 7th International Conference, P181, DOI 10.1007/978-3-642-30615-0_17