A series of variable separation solutions and new soliton structures of (2+1)-dimensional Korteweg-de Vries equation

被引:0
|
作者
Xu Chang-Zhi [1 ]
机构
[1] Jinhua Educ Coll, Dept Phys, Jinhua 321000, Peoples R China
关键词
variable separation approach; (2+1)-dimensional KdV equation; new soliton excitation;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation model (24). Based on this excitation, new soliton structures such as the multi-lump soliton and periodic soliton are revealed by selecting the arbitrary function appropriately.
引用
收藏
页码:403 / 406
页数:4
相关论文
共 50 条
  • [21] Coupled Modified Korteweg-de Vries Lattice in(2+1)Dimensions and Soliton Solutions
    YANG Hong-Xiang Department of Information Science and Technology
    CommunicationsinTheoreticalPhysics, 2006, 45 (04) : 581 - 586
  • [22] On some invariant solutions of (2+1)-dimensional Korteweg-de Vries equations
    Kumar, Mukesh
    Tanwar, Dig Vijay
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (11-12) : 2535 - 2548
  • [23] Investigation of a new similarity solution for the (2+1)-dimensional Schwarzian Korteweg-de Vries equation
    Ali, Mohamed R.
    Mubaraki, Ali
    Sadat, R.
    Ma, Wen-Xiu
    MODERN PHYSICS LETTERS B, 2024,
  • [24] Multiple soliton solutions and other solutions of a variable-coefficient Korteweg-de Vries equation
    Mabenga, C.
    Muatjetjeja, B.
    Motsumi, T. G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (09):
  • [25] Soliton solutions for a variable-coefficient Korteweg-de Vries equation in fluids and plasmas
    Jiang, Yan
    Tian, Bo
    Liu, Wen-Jun
    Sun, Kun
    Qu, Qi-Xing
    PHYSICA SCRIPTA, 2010, 82 (05)
  • [26] Darboux transformation and soliton solutions of the (2+1)-dimensional Schwarz-Korteweg-de Vries equation
    Li, Xuemei
    Zhang, Mingxiao
    MODERN PHYSICS LETTERS B, 2020, 34 (25):
  • [27] Lax pairs, Painleve properties and exact solutions of the Calogero Korteweg-de Vries equation and a new (2+1)-dimensional equation
    Yu, SJ
    Toda, K
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2000, 7 (01) : 1 - 13
  • [28] The Schwarzian Korteweg-de!Vries equation in (2+1) dimensions
    Ramírez, J
    Bruzón, MS
    Muriel, C
    Gandarias, ML
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (05): : 1467 - 1484
  • [29] Analytic investigation of the (2+1)-dimensional Schwarzian Korteweg-de Vries equation for traveling wave solutions
    Aslan, Ismail
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 6013 - 6017
  • [30] Soliton solutions of the (2+1)-dimensional complex modified Korteweg-de Vries and Maxwell-Bloch equations
    Yesmakhanova, K.
    Bekova, G.
    Shaikhova, G.
    Myrzakulov, R.
    5TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2016), 2016, 738