A series of variable separation solutions and new soliton structures of (2+1)-dimensional Korteweg-de Vries equation

被引:0
|
作者
Xu Chang-Zhi [1 ]
机构
[1] Jinhua Educ Coll, Dept Phys, Jinhua 321000, Peoples R China
关键词
variable separation approach; (2+1)-dimensional KdV equation; new soliton excitation;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation model (24). Based on this excitation, new soliton structures such as the multi-lump soliton and periodic soliton are revealed by selecting the arbitrary function appropriately.
引用
收藏
页码:403 / 406
页数:4
相关论文
共 50 条
  • [1] A Series of Variable Separation Solutions and New Soliton Structures of (2+1)-Dimensional Korteweg-de Vries Equation
    XU Chang-Zhi Department of Physics
    CommunicationsinTheoreticalPhysics, 2006, 46 (09) : 403 - 406
  • [2] New variable separation solutions and nonlinear phenomena for the (2+1)-dimensional modified Korteweg-de Vries equation
    Liang, Yueqian
    Wei, Guangmei
    Li, Xiaonan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (02) : 603 - 609
  • [3] On an integrable (2+1)-dimensional Korteweg-de Vries equation with a discrete variable
    Cao, Cewen
    Cao, Jianli
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2006, 121 (07): : 675 - 687
  • [4] DIVERSITY SOLITON EXCITATIONS FOR THE (2+1)-DIMENSIONAL SCHWARZIAN KORTEWEG-DE VRIES EQUATION
    Li, Zitian
    THERMAL SCIENCE, 2018, 22 (04): : 1781 - 1786
  • [5] Different Wave Structures for the (2+1)-Dimensional Korteweg-de Vries Equation
    Qin, Chun-Rong
    Liu, Jian-Guo
    Zhu, Wen-Hui
    Ai, Guo-Ping
    Uddin, M. Hafiz
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [6] Nonautonomous characteristics of lump solutions for a (2+1)-dimensional Korteweg-de Vries equation with variable coefficients
    Chen, Fei-Peng
    Chen, Wei-Qin
    Wang, Lei
    Ye, Zhen-Jun
    APPLIED MATHEMATICS LETTERS, 2019, 96 : 33 - 39
  • [7] New periodic solitary wave solutions for the new (2+1)-dimensional Korteweg-de Vries equation
    Li, Ye-Zhou
    Liu, Jian-Guo
    NONLINEAR DYNAMICS, 2018, 91 (01) : 497 - 504
  • [8] New coherent structures and interaction behavior for the new (2+1)-dimensional Korteweg-de Vries equation
    Li, Zitian
    CHAOS SOLITONS & FRACTALS, 2024, 184
  • [9] Periodic solutions of the (2+1)-dimensional complex modified Korteweg-de Vries equation
    Yuan, Feng
    Jiang, Ying
    MODERN PHYSICS LETTERS B, 2020, 34 (18):
  • [10] ?-dressing method for the (2+1)-dimensional Korteweg-de Vries equation
    Yang, Shuxin
    Li, Biao
    APPLIED MATHEMATICS LETTERS, 2023, 140