Experimental Study on Mechanical Properties of Steel Fiber Reinforced High Performance Concrete

被引:5
|
作者
Ma, Yong-Qiang [1 ]
机构
[1] Minist Railways, Supervis Stn Engn Qual & Safety, Beijing 100844, Peoples R China
关键词
High performance concrete; Mechanical property; Steel fiber;
D O I
10.4028/www.scientific.net/AMR.859.56
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A large number of experiments have been carried out in this study to reveal the effect of the steel fiber dosage on the mechanical properties of HPC (high performance concrete). The mechanical property includes compressive strength, elastic modulus and flexural strength. The results indicate that the addition of steel fiber increase the compressive strength, elastic modulus and flexural strength of HPC. When the steel fiber dosage is less than 2%, these mechanical property parameters are increasing gradually with the increase of steel fiber dosage, while these parameters begin to decrease when the steel fiber dosage is more than 2%. With the development of HPC, the application of steel fibers in HPC becomes more and more popular. In the actual construction of steel fiber reinforced HPC, the dosage of steel fiber should be controlled strictly in order to ensure that the steel fibers can perform their best improvement on high performance concrete.
引用
收藏
页码:56 / 59
页数:4
相关论文
共 50 条
  • [31] Mechanical properties of steel and polymer fiber reinforced concrete
    Babaie, Reza
    Abolfazli, Milad
    Fahimifar, Ahmad
    JOURNAL OF THE MECHANICAL BEHAVIOR OF MATERIALS, 2019, 28 (01) : 119 - 134
  • [32] Mechanical properties of steel fiber-reinforced concrete
    Thomas, Job
    Ramaswamy, Ananth
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2007, 19 (05) : 385 - 392
  • [33] Experimental Study on Basic Mechanical Properties of Basalt Fiber Reinforced Concrete
    Zhou, Hao
    Jia, Bin
    Huang, Hui
    Mou, Yanling
    MATERIALS, 2020, 13 (06)
  • [34] Experimental Study on Mechanical Properties of Hybrid Fiber-Reinforced Concrete
    Kinjawadekar, Trupti Amit
    Patil, Shantharam
    Nayak, Gopinatha
    Kinjawadekar, Amit
    Kulal, Shreyas A.
    Journal of Architectural Engineering, 1600, 30 (04):
  • [35] Orthogonal Experimental Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete
    Quan C.
    Jiao C.
    Yang Y.
    Li X.
    Zhang L.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2019, 22 (03): : 363 - 370
  • [36] Experimental Study on Mechanical Properties of Hybrid Fiber-Reinforced Concrete
    Kinjawadekar, Trupti Amit
    Patil, Shantharam
    Nayak, Gopinatha
    Kinjawadekar, Amit
    Kulal, Shreyas A.
    JOURNAL OF ARCHITECTURAL ENGINEERING, 2024, 30 (04)
  • [37] Mechanical properties of high-strength steel fiber-reinforced concrete
    Song, PS
    Hwang, S
    CONSTRUCTION AND BUILDING MATERIALS, 2004, 18 (09) : 669 - 673
  • [38] Mechanical properties of Hybrid steel/PVA fiber reinforced high strength concrete
    Abbass, Wasim
    Khan, M. Iqbal
    INTERNATIONAL CONFERENCE ON CONCRETE REPAIR, REHABILITATION AND RETROFITTING (ICCRRR 2018), 2018, 199
  • [39] Effect of High Temperature on the Mechanical Properties of Steel Fiber-Reinforced Concrete
    Bezerra, Augusto C. S.
    Maciel, Priscila S.
    Correa, Elaine C. S.
    Soares Junior, Paulo R. R.
    Aguilar, Maria T. P.
    Cetlin, Paulo R.
    FIBERS, 2019, 7 (12)
  • [40] Mechanical properties of nano SiO2 and fiber-reinforced concrete with steel fiber and high performance polypropylene fiber
    Mei, Mengjun
    Wu, Linsong
    Wan Chengcheng
    Wu, Zhiwei
    Liu, Hui
    Yi, Yanlin
    MATERIALS RESEARCH EXPRESS, 2021, 8 (10)