Experimental Study on Mechanical Properties of Steel Fiber Reinforced High Performance Concrete

被引:5
|
作者
Ma, Yong-Qiang [1 ]
机构
[1] Minist Railways, Supervis Stn Engn Qual & Safety, Beijing 100844, Peoples R China
关键词
High performance concrete; Mechanical property; Steel fiber;
D O I
10.4028/www.scientific.net/AMR.859.56
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A large number of experiments have been carried out in this study to reveal the effect of the steel fiber dosage on the mechanical properties of HPC (high performance concrete). The mechanical property includes compressive strength, elastic modulus and flexural strength. The results indicate that the addition of steel fiber increase the compressive strength, elastic modulus and flexural strength of HPC. When the steel fiber dosage is less than 2%, these mechanical property parameters are increasing gradually with the increase of steel fiber dosage, while these parameters begin to decrease when the steel fiber dosage is more than 2%. With the development of HPC, the application of steel fibers in HPC becomes more and more popular. In the actual construction of steel fiber reinforced HPC, the dosage of steel fiber should be controlled strictly in order to ensure that the steel fibers can perform their best improvement on high performance concrete.
引用
收藏
页码:56 / 59
页数:4
相关论文
共 50 条
  • [1] Experimental Study on Mechanical Properties of Green High Performance Fiber Reinforced Concrete
    Zheng, Shansuo
    Hu, Jinhua
    Zhang, Xin
    Yang, Feng
    Zhou, Lin
    Ruan, Sheng
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2024, 51 (09): : 155 - 164
  • [2] Experimental study on mechanical properties of steel and steel fiber reinforced concrete beams
    Wu, Kai
    Zhang, Yanjie
    Lin, Shiqi
    Liang, Qingqing
    Qian, Shiyuan
    STRUCTURAL DESIGN OF TALL AND SPECIAL BUILDINGS, 2022, 31 (17):
  • [3] Research on Mechanical Properties of Steel Fiber Reinforced High Performance Recycled Concrete
    Li, Wenli
    Chai, Wenge
    Yi, Cheng
    Gao, Yanli
    Li, Zhaoguang
    ADVANCES IN BUILDING MATERIALS, PTS 1-3, 2011, 168-170 : 2044 - 2048
  • [4] Experimental study on mechanical properties of steel fiber reinforced lightweight aggregate concrete
    Wang, Hai-Tao
    Wang, Li-Cheng
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2007, 10 (02): : 188 - 194
  • [5] Experimental study on basic mechanical properties of recycled steel fiber reinforced concrete
    Gao, Yongtao
    Wang, Bin
    Liu, Changjiang
    Hui, David
    Xu, Qiang
    Zhao, Qihua
    Wei, Jiachen
    Hong, Xiaoyu
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2022, 61 (01) : 417 - 429
  • [6] Study on Mechanical Properties of Steel Fiber Reinforced Concrete
    Yu, Xiaoqing
    Lin, Mao
    Geng, Guanglong
    Wei, Na
    Jia, Li
    ADVANCED RESEARCH ON APPLIED MECHANICS AND MANUFACTURING SYSTEM, 2013, 252 : 280 - 284
  • [7] Experimental study on mechanical properties of locally composite steel and steel fiber reinforced concrete beams
    Wu, Kai
    Yang, Yiheng
    Zhang, Yanjie
    Liang, Qingqing
    Wang, Shilong
    STRUCTURES, 2023, 58
  • [8] Mechanical properties of steel fiber reinforced concrete at high temperature
    Kikuchi T.
    Shintani Y.
    Hirashima T.
    Kohno M.
    Journal of Structural and Construction Engineering, 2020, 85 (767): : 169 - 176
  • [9] MECHANICAL PROPERTIES OF HIGH STRENGTH STEEL FIBER REINFORCED CONCRETE
    Gherman, Oana Eugenia
    Constantinescu, Horia
    Gherman, Marius Calm
    NANO, BIO AND GREEN - TECHNOLOGIES FOR A SUSTAINABLE FUTURE CONFERENCE PROCEEDINGS, SGEM 2016, VOL II, 2016, : 629 - 636
  • [10] Steel fiber reinforced high-performance concrete: a study on the mechanical properties and resistance against impact
    Luo, X
    Sun, W
    Chan, SYN
    MATERIALS AND STRUCTURES, 2001, 34 (237) : 144 - 149