Polymers derived from hemicellulosic parts of lignocellulosic biomass

被引:66
作者
Lee, Younghyun [1 ]
Kwon, Eilhann E. [2 ]
Lee, Jechan [1 ]
机构
[1] Ajou Univ, Dept Environm Engn, Suwon 16499, South Korea
[2] Sejong Univ, Environm & Energy Dept, Seoul 05006, South Korea
基金
新加坡国家研究基金会;
关键词
Biorefinery; Biopolymer; Furfural; Hemicellulose; Lignocellulosic biomass; FURFURYL ALCOHOL POLYMERIZATION; PHASE SELECTIVE HYDROGENATION; VERSATILE BUILDING-BLOCK; SOLID ACID CATALYST; SUCCINIC ACID; LEVULINIC ACID; REDUCTIVE AMINATION; AEROBIC OXIDATION; MALEIC-ANHYDRIDE; CORN STOVER;
D O I
10.1007/s11157-019-09495-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Furfural, which is directly derived from the hemicellulosic parts of lignocellulosic biomass, is considered as one of the most promising platform chemicals to manufacture commodity chemical products such as polymers and their monomers. Its production has already been commercialized. In this review, potentially relevant methods for producing important chemicals from furfural, which are used as monomers for different polymers, and for the polymerization of furfural and its derivatives (e.g., furfuryl alcohol), have been discussed. First, the production of furfural from different lignocellulosic biomasses is presented. Next, the synthesis of various monomers and their highest available yields from furfural are discussed. The polymers that can be directly produced from furfural and its derivatives are explored. Finally, the challenges of producing furfural-based products have been highlighted.
引用
收藏
页码:317 / 334
页数:18
相关论文
共 127 条
  • [1] Furfural production from xylose plus glucose feedings and simultaneous N2-stripping
    Agirrezabal-Telleria, I.
    Requies, J.
    Gueemez, M. B.
    Arias, P. L.
    [J]. GREEN CHEMISTRY, 2012, 14 (11) : 3132 - 3140
  • [2] Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen
    Agirrezabal-Telleria, I.
    Larreategui, A.
    Requies, J.
    Gueemez, M. B.
    Arias, P. L.
    [J]. BIORESOURCE TECHNOLOGY, 2011, 102 (16) : 7478 - 7485
  • [3] Gas phase oxidation of furfural to maleic anhydride on V2O5/γ-Al2O3 catalysts: Reaction conditions to slow down the deactivation
    Alonso-Fagundez, N.
    Ojeda, M.
    Mariscal, R.
    Fierro, J. L. G.
    Lopez Granados, M.
    [J]. JOURNAL OF CATALYSIS, 2017, 348 : 265 - 275
  • [4] Aqueous-phase catalytic oxidation of furfural with H2O2: high yield of maleic acid by using titanium silicalite-1
    Alonso-Fagundez, N.
    Agirrezabal-Telleria, I.
    Arias, P. L.
    Fierro, J. L. G.
    Mariscal, R.
    Lopez Granados, M.
    [J]. RSC ADVANCES, 2014, 4 (98): : 54960 - 54972
  • [5] Selective Conversion of Furfural to Maleic Anhydride and Furan with VOx/Al2O3 Catalysts
    Alonso-Fagundez, Noelia
    Lopez Granados, Manuel
    Mariscal, Rafael
    Ojeda, Manuel
    [J]. CHEMSUSCHEM, 2012, 5 (10) : 1984 - 1990
  • [6] Preparation of mesoporous oxides and their support effects on Pt nanoparticle catalysts in catalytic hydrogenation of furfural
    An, Kwangjin
    Musselwhite, Nathan
    Kennedy, Griffin
    Pushkarev, Vladimir V.
    Baker, L. Robert
    Somorjai, Gabor A.
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2013, 392 : 122 - 128
  • [7] [Anonymous], BIOCHIMICA BIOPHYSIC, DOI DOI 10.1016/S0167-4889(00)00143-9
  • [8] Araji N, 2017, GREEN CHEM, V19, P98, DOI [10.1039/C6GC02620F, 10.1039/c6gc02620f]
  • [9] Solid base catalysed 5-HMF oxidation to 2,5-FDCA over Au/hydrotalcites: fact or fiction?
    Ardemani, Leandro
    Cibin, Giannantonio
    Dent, Andrew J.
    Isaacs, Mark A.
    Kyriakou, Georgios
    Lee, Adam F.
    Parlett, Christopher M. A.
    Parry, Stephen A.
    Wilson, Karen
    [J]. CHEMICAL SCIENCE, 2015, 6 (08) : 4940 - 4945
  • [10] Carbon dioxide utilization via carbonate-promoted C-H carboxylation
    Banerjee, Aanindeeta
    Dick, Graham R.
    Yoshino, Tatsuhiko
    Kanan, Matthew W.
    [J]. NATURE, 2016, 531 (7593) : 215 - +